Нобелевская премия: почему графен не из России. Графен и его создатели

Родился в 1958 году в Сочи, защитил диссертацию в Институте физики твердого тела АН СССР. Работал научным сотрудником в Черноголовке, потом эмигрировал за границу, где трудился в университетах Ноттингема, Копенгагена и Неймегена. С 2001 года работает в английском Манчестере. В настоящее время Гейм, который теперь носит имя Андре, возглавляет Манчестерский центр по «мезонауке и нанотехнологиям», а также отдел физики конденсированного состояния.

Андре Гейм — подданный Нидерландов, в то время как его коллега и второй лауреат Нобеля-2010 имеет российское и британское подданство.

Новоселов родился в 1974 году в Нижнем Тагиле. После окончания МФТИ он несколько лет проработал в Черноголовке, после чего уехал в Университет Неймегена, где защитил диссертацию.

Нобелевскую премию Гейм и Новоселов получили «За новаторские эксперименты, касающиеся двумерного материала графена». На двоих ученые получат 1,5 млн долларов (10 млн шведских крон).

Выступая по телефону на пресс-конференции, Гейм заявил, что не ожидал получения премии. «Мой план на сегодня — пойти на офис и закончить работу с бумагами, которую я еще не успел сделать», — приводит слова Гейма.

Графен — одна из форм (так называемых аллотропных модификаций), в которых может существовать углерод, пожалуй, самая экзотическая. Более известные — собственно, графит (из которого состоят грифели карандашей), алмаз, карбин (модификация с цепочечным строением молекул) и фуллерен (получивший в научной среде прозвище «футбольный мяч» за свою структуру). Графен представляет собой сверхтонкие (толщиной в один атом) слои из атомов углерода, связанные в гексагональную (состоящую из шестиугольников с общими сторонами) структуру. Как материал — новый и современный — он является самым тонким и одновременно самым прочным. Кроме того, он обладает проводящими свойствами, характерными для таких металлов, как медь. По теплопроводности он превосходит все известные на сегодняшний день материалы. Двумерные слои графена почти прозрачные, однако настолько плотные, что даже самые маленькие молекулы (например, одноатомные молекулы благородного газа гелия) не могут пройти сквозь слой.

Графен — еще одно проявление уникальных химических свойств углерода, благодаря которым, в частности, на нашей планете существует все живое.

Теоретическое исследование графена началось задолго до получения реальных образцов материала, поскольку графен является базой для построения трехмерного кристалла обычного графита. Однако получить графен экспериментально не удавалось. Интерес к нему возродился после открытия углеродных нанотрубок, представляющих собой фактически свернутый в цилиндр монослой.

Попытки получения графена, прикрепленного к другому материалу (ранее было показано теоретически, что свободную идеальную двумерную пленку получить невозможно из-за нестабильности относительно сворачивания или скручивания), начались с экспериментов, использующих простой карандаш, и продолжились с использованием атомно-силового микроскопа для механического удаления слоев графита, но не достигли успеха.

Однако в 2004 году Новоселов и Гейм опубликовали в журнале Science работу, где сообщалось о получении графена на подложке окисленного кремния. Таким образом, стабилизация двумерной плёнки достигалась благодаря наличию связи с тонким слоем диэлектрика SiO 2 .

Метод «отшелушивания» является довольно простым и гибким, поскольку позволяет работать со всеми слоистыми кристаллами, то есть теми материалами, которые представляются как слабо (по сравнению с силами в плоскости) связанные слои двумерных кристаллов. После этого ученым удалось таким же способом получить двумерные кристаллы BN, MoS 2 , NbSe 2 , Bi 2 Sr 2 CaCu 2 O x .

Фактически открытие графена привело к созданию целого класса принципиально новых двумерных материалов с уникальными свойствами.

Квантовая физика развивает теорию таких объектов, а их практические применения обещают быть поистине впечатляющими. Материалы на основе графена могут перевернуть мир электроники: в частности, ученые предполагают, что графеновые транзисторы будут работать на порядки быстрее, чем современная кремниевая техника. Графен можно использовать для производства прозрачных сенсорных экранов, световых панелей или даже солнечных батарей. В смеси с пластиками графен дает возможность создавать композитные проводящие материалы, более устойчивые к действию высоких температур. Прочность графена позволяет конструировать новые механически устойчивые материалы, сверхтонкие, эластичные и легкие. В будущем из композитных материалов на основе графена, возможно, будут делать спутники, самолеты и автомобили.

Интересно, что в 2000 году Андре Гейм стал лауреатом Шнобелевской премии с формулировкой «За использование магнитов для подвешивания (левитации) лягушки». В научной среде ходят слухи, что после этих опытов лягушка выжила и даже дала потомство.

Эксперты из Thompson Reuters вновь не угадали лауреата Нобелевской премии.

Накануне они предполагали, что премией отметят астрономов, открывших противоречащий фундаментальному закону Хаббла феномен ускоряющегося расширения Вселенной, а также роль темной энергии в нем. Поэтому звонка от Нобелевского комитета могли ждать из Университета Калифорнии в Беркли, Адам Райес из Университета в Балтиморе и из Австралийского национального университета. Вторым основным претендентом на премию считалась научная группа космического аппарата WMAP (Wilkinson Microwave Anisotropy Probe, ), предназначенного для изучения реликтового излучения, образовавшегося в результате Большого взрыва в момент зарождения Вселенной. В качестве возможных лауреатов назывались Чарльз Беннет (NASA и Университет Джона Хопкинса, Мэриленд), а также Лиман Пейдж и Дэвид Шпергель из (Нью-Джерси). Последние в этом году стали лауреатами молодой, но довольно престижной премии Шоу по астрономии.Петр Капица получил награду «за основополагающие изобретения и открытия в области физики низких температур». В 2000 году лауреатом стал «за разработку полупроводниковых гетероструктур, используемых в высокоскоростной и оптической электронике». И, наконец, последняя на данный момент российская Нобелевская премия досталась в 2003 году и «за пионерский вклад в теорию сверхпроводимости и сверхтекучести».

В Стокгольме объявлены имена лауреатов Нобелевской премии по физике за 2010 год. Ими стали профессор Андрей Гейм и профессор Константин Новосёлов. Оба лауреата, работающие в британском университете Манчестера, - выходцы из России. 52-летний Андрей Гейм является подданным Нидерландов, а 36-летний Константин Новосёлов имеет российское и британское гражданство.

Самой престижной в мире научной премии, размер которой составляет в этом году около 1,5 миллионов долларов, учёные удостоены за открытие графена - сверхтонкого и крайне прочного материала, представляющего собой углеродную пленку толщиной в один атом.

О том, какие трудности возникли при открытии графена и каково практическое применение этого материала, рассказывает в эфире Радио Свобода научный редактор журнала "Вокруг света" Александр Сергеев:

Сам факт получения графена учеными замечателен. Теоретически графен был предсказан еще за полвека до его синтеза. В школе все проходили структуру графита - это обычный карандаш. Атом углерода образует тонкие слои, которые многократно наслаиваются друг на друга. Каждый слой состоит из шестиугольных ячеек, которые, как пчелиные соты, состыковываются друг с другом.

Проблема была в том, чтобы получить один слой, отделенный от выше и ниже лежащих. Для одиночного слоя этого двумерного кристалла, называемого так потому, что третьего измерения у него нет, предсказывалась куча разных интересных физических свойств. Ставилось много экспериментов. Но добиться отделения одного слоя от всех остальных с устойчивым результатом не удавалось.

Андрей Гейм и Константин Новоселов придумали способ, которым они смогли выделить этот слой и убедиться впоследствии, что он действительно один. Затем ученые смогли измерить его физические свойства и проверить, что теоретические предсказания более-менее верны. Этот эксперимент очень прост: ученые взяли обычный карандаш, кусочек графита. Липкой лентой с него сняли слой графита, а затем начали его отшелушивать. Когда оставались 1-2 слоя, графит переносили на кремниевую подложку.

Почему не удавались все прежние эксперименты? Потому что (и это предсказывалось теоретически) графеновая пленка, двумерный углеродный кристалл, неустойчива к скручиванию. Чуть только она окажется в свободном состоянии, она немедленно начнет комкаться. Было даже такое мнение, что графен выделить невозможно. Работа ученых была сделана в 2004 году, а в 2009 уже был получен кусочек графена. То есть, лист графена размером почти в сантиметр. А сейчас говорится уже о десятках сантиметров.

- А зачем вообще нужен этот графен?

Вся электроника сейчас движется в направлении уменьшения размеров элементов - транзисторов, электродов и т. д. Чем меньше элементы внутри процессора, тем больше элементов можно в него поместить и тем мощнее можно собрать процессор. Следовательно, в нем будут выполняться более сложные логические операции. Что может быть тоньше, чем один атомарный слой? Графен обладает свойством тонкости.

Кроме того, он проводит электричество. И - практически прозрачен. В то же время, он достаточно прочен: это один из самых прочных материалов в расчете на один атомарный слой. Он практически не пропускает через себя никакие другие вещества. Даже газообразный гелий не может просочиться сквозь графен, поэтому это вполне надежное покрытие. Его можно использовать, например, в сенсорных экранах, потому что прозрачный электрод не будет заслонять изображение. Его можно попытаться использовать в электронике. Сейчас пытаются разрабатывать транзисторы на основе графенов. Правда, здесь есть свои трудности. У графена есть аномальные свойства, которые несколько затрудняют его применение в транзисторах. Но после того, как научились получать атомарные слои, вероятно, это уже преодолимые преграды. Это принципиально новый материал. Ничего похожего до сих пор не было. Самый тонкий монослой проводника, который можно использовать в технике, в электронике.

У новых нобелевских лауреатов довольно сложная биография. Один из них - подданный Нидерландов, у другого - два паспорта: британский и российский. Работали они, насколько известно, в научном центре в Манчестере, Англия. Наука становится интернациональной, или это грустная судьба российских ученых - совершать великие открытия, только если они выезжают за рубеж?

Для того, чтобы заниматься серьезными научными работами, нужна не только материально-техническая база, но и просто спокойствие духа. Ученый не должен быть заморочен какими-то вопросами. Андрей Гейм 10 лет назад получил Шнобелевскую премию за эксперименты по магнитному левитированию лягушек. Шнобелевская премия - это шуточная антипремия за бессмысленные работы. Ученому необходима определенная вольность в своей деятельности. Тогда рождаются идеи. Сегодня лягушек левитировал, а завтра получаю графены.

Если у человека есть такие условия, то он работает эффективнее. Ведь оба нынешних нобелевских лауреата по физике учились в МФТИ (Московский физико-технический институт - РС). И очень скоро уехали в Голландию, в Великобританию, потому что там атмосфера работы более благоприятна для поиска научных средств, необходимых для того, чтобы вести исследования. Углеродные пленки они отрывали скотчем, но измерять-то их надо было атомно-силовым микроскопом. Значит, этот микроскоп должен был быть. В России они, конечно, есть, но к ним гораздо сложнее получить доступ.

Если я скажу, что в России хорошее базовое образование, которое позволяет выращивать лауреатов Нобелевских премий, но в то же время отсутствует серьезная научная высокотехнологическая база для экспериментов, это будет верно?

Как и в любом обобщении, здесь есть некоторая натяжка. С образованием у нас уже не так хорошо и гладко, потому что во многих местах научные школы разрушаются. Сказался большой перерыв в работе 90-е годы. В России есть единичные школы, где все держится еще очень неплохо, но есть проблемы с оборудованием и ведением серьезных дорогостоящих исследований. Куда-то это оборудование попадает: время от времени делаются довольно серьезные закупки, например, в Курчатовский институт. Но насколько эффективно оно там применяется - большой вопрос. Поэтому в одних местах есть сильная научная школа, а в других - средства на технику. Обменяться между собой им достаточно сложно из соображений престижна и бюрократии. В России тоже возможны исследования высокого класса, но их гораздо труднее вести - здесь более тяжелая среда для работы.

Научные исследования многогранны. Но есть ли отдельные направления, которые Нобелевским комитетом определяются как прорывные? За которые легче получить Нобелевскую премию? Или таких направлений нет?

Я посмотрел список лауреатов Нобелевских премий по физике за последние 20 лет. Однозначной тенденции нет. Пожалуй, достаточно много премий в области физики элементарных частиц, фундаментальных физических взаимодействий. Это и понятно - там делают достаточно интересные работы. Но тут надо учитывать важный момент. Часто говорят, что, чтобы получить Нобелевскую премию, недостаточно сделать прорывную работу. Нужно еще дожить до того времени, когда ее оценят. Поэтому Нобелевская премия, как правило, присуждается людям в очень почтенном возрасте. С этой точки зрения Нобелевская премия по физике этого года является исключением из правил. Новоселову сейчас 36 лет. За последние 20 лет среди премий по физике такого случая не было и, по-моему, не было вообще! За последние 8 лет никто из ученых младше 50 лет не получал Нобелевскую премию, а многие получали ее в возрасте за 70, а то и за 80 лет за работы, сделанные десятки лет назад.

Нынешняя Нобелевская премия была вручена в нарушение правил. Может быть, Нобелевский комитет почувствовал, что премия становится геронтологической и надо снижать возраст ее получения. В последний раз в "молодом" возрасте премия по физике вручалась в 2001 году. Лауреатам было от 40 до 50 лет.

Сейчас, видимо, сделана установка на актуальные экспериментальные работы. Так, хотя в Нобелевскую премию не входит астрономия, за последние 10 лет было две очень важных премии по астрофизике. Были премии по физике высоких энергий и физике элементарных частиц, по физике твердого тела, по физике конденсированного состояния - то есть, твердого, жидкого и прочих состояний, в которых атомы находятся вплотную друг к другу. Почти все эти работы, так или иначе, завязаны на квантовую физику.

- А почему именно квантовая теория? Это связано с какими-то личными пристрастиями членов Нобелевского комитета? Или это действительно ближайшее научное будущее?

Причина очень простая. На самом деле, вся физика, кроме теории гравитации, сегодня квантовая. Практически все новое, что делается в области физики, за исключением отдельных побочных направлений, доработок и прорывов, которые были в прошлом, основано на квантовой физике. Только гравитация пока еще не поддалась этому "квантованию". А все остальное, что касается фундамента физики - это квантовая теория и квантовая теория материй.

Графен - материал, который последние шесть лет находится в центре внимания физиков-экспериментаторов во всем мире. До этого, правда, лет 40 считалось, что двумерный лист углерода - не более чем модельная абстракция, позволяющая в некоторых случаях сделать громоздкие вычисления в квантовой механике чуть более подъемными и обозримыми. Так вот, Константин Новоселов и Андрей Гейм, в настоящее время работающие в Манчестерском университете, получили Нобелевскую премию за то, что перевели графен из теоретической плоскости в практическую. Однако обо всем по порядку.

Долгая дорога к графену

Из школьной химии известно, что свойства того или иного вещества зависят не только от атомов, которые его составляют, но и от их взаимного расположения. В качестве примера обычно приводят углерод, который в случае одного расположения атомов дает хрупкий грязный графит, а в другом - твердый сияющий алмаз. Такие простые вещества, имеющие разные свойства при одинаковом составе, называют аллотропными модификациями. В этом смысле графит и алмаз - аллотропные модификации углерода.

В 60-х годах прошлого века физики стали интенсивно изучать не только трехмерные, но и двумерные аллотропные модификации. В частности, например, атомы углерода могут располагаться в одной плоскости самым простым и естественным образом - в виде гексагональной решетки (то есть решетки, у которой все ячейки - шестиугольники). Уже тогда, кстати, эта идея была не нова - например, Оскар Клейн еще в 1929 году предсказывал такому материалу необычные квантовые свойства.

В это же время предпринимались попытки получить отдельно "куски" плоского углерода, однако они не привели к успеху. В результате многие ученые решили, что получение этого материала на практике в принципе невозможно из соображений стабильности (такое в физике происходит сплошь и рядом - например, составляющие адроны кварки не существуют по отдельности).

В результате графен оставался не более чем абстракцией, удобной, например, для вычислений, ведь в случае двух измерений многие уравнения, связанные, например, с квантовой механикой, заметно упрощаются.

Первым предвестником революционного открытия Андрея Гейма и Константина Новоселова стало обнаружение фуллеренов в середине 1980-х годов. Фуллерены - это выпуклые многогранники, в вершинах которых располагаются атомы углерода. Самый известный подобный материал называется C 60 - в этой модификации атомы располагаются в вершинах фигуры, которая, напоминает футбольный мяч (в математике такой многогранник называется усеченным икосаэдром). За это открытие, кстати, американцы Роберт Керл и Ричард Смелли вместе с британцем Харолд Крото получили Нобелевскую премию по химии 1996 года.

Затем, в 90-х годах, развитие техники сделало возможным изучение так называемых углеродных нанотрубок (на звание первооткрывателей этих объектов претендуют сразу несколько групп исследователей, среди которых есть и советские физики). От трубок, казалось бы, до графена рукой подать: разрезал их вдоль, развернул - вот и готов двумерный листочек углерода. Оказывается, такое , что и доказали ученые из Стэнфордского университета и университета Райса в 2009 году. Однако впервые "невозможный" материал был получен другим способом.

Война за первенство

Андрей Константинович Гейм родился в 1958 году в Сочи. В 1982 году закончил факультет общей и прикладной физики МФТИ, а в 1987 году защитил кандидатскую диссертацию в Институте физики твердого тела АН СССР. До 1990 года работал в Институте проблем технологии микроэлектроники и особочистых материалов, после чего уехал за границу. На момент совершения открытия (2004 год) вместе с Константином Новоселовым работал в Манчестерском университете. Сейчас трудится там же, являясь формально гражданином Голландии. Примечательно, что Гейм является лауреатом Шнобелевской премии 2000 года за изучение левитации лягушек.

Как это часто бывает в науке, Гейму и Новоселову удалось не только удивить большинство физиков, получив на практике материал, который считался нестабильным, но и опередить несколько других групп исследователей, которые буквально дышали им в затылок.

Так, например технологию пилинга (именно так называется методика, по которой работали выходцы из бывшего СССР) придумали не Гейм с Новоселовым - данный метод безуспешно пытались применить исследователи под предводительством Родни Руоффа из Техасского университета еще в 1999 году.

Далее, спустя всего два месяца после появления статьи Гейма и Новоселова ученые из Технологического университета Джорджии подали на публикацию статью, в которой тонкие листы углерода предлагалось получать выжиганием при температуре 1300 градусов по Цельсию карбида кремния. Кроме этого в это же время физики из Колумбийского университета пробовали "рисовать" подобные пленки - они прикрепляли кристалл углерода к игле силового микроскопа и водили им по поверхности. Таким образом, однако, им удалось получить пленки, толщиной в 10 углеродных слоев.

Константин Сергеевич Новоселов родился в 1974 году в Нижнем Тагиле. В 1997 году закончил МФТИ и до 1999 года работал в Институте проблем технологии микроэлектроники и особо чистых материалов, после чего уехал за границу. В настоящее время работает в Манчестерском университете. Имеет два гражданства - российское и британское.

Как же Гейм и Новоселов опередили своих соперников? Оказывается, любой человек, когда-либо писавший карандашом, помимо своей воли занимался производством графеновых листов - во время письма углерод с графитового острия отслаивается плоскими хлопьями, некоторые из которых могут оказаться толщиной всего в один атом. Именно эту идею использовали Гейм и Новоселов - они отклеивали хлопья от графита при помощи скотча, после чего переносили их на специальную подложку. В 2004 году в Science появилась статья физиков, в которой они описывали не только технологию получения графена, но и некоторые его свойства.

Физики научились создавать пригодные для наноэлектроники ленты из графена. Ученые объяснили неудачи высокотемпературной сверхпроводимости. Физикам удалось заселить электронами свободные места в графене. Химикам удалось в десятки раз увеличить размер листа графена. Физики раскрыли механизм разрыва графена. Все перечисленное - это только заголовки заметок, посвященных графену, которые появились на "Ленте.ру" с начала 2010 года.

За прошедшие после открытия Гейма и Новоселова 6 лет ученые научились не только производить более или менее большие куски графена, но и обнаружили невероятный потенциал данного материала. Так, графен обладает высокой прочностью (он в 100 раз прочнее листа стали аналогичной толщины), теплопроводимостью (графен проводит тепло в 10 раз лучше меди), максимальной подвижностью электронов среди всех известных материалов, а также пригоден для создания уникальной электроники и многого другого.

Правда, почти все возможности графена пока далеки от практики - факт, который, очевидно, в Нобелевском комитете хорошо понимают (оттого и формулировка, с которой Гейму и Новоселову вручили награду, звучит как "за пионерские эксперименты, касающиеся двухмерного материала графена"). Несмотря на это за графеном будущее. Будущее, которое станет реальностью благодаря работе когда-то российских ученых Андрея Гейма и Константина Новоселова.

Нобелевская премия 2010 года по физике присуждена выходцам из России, работающим в Великобритании - Константину Новоселову и Андрею Гейму - за создание графена, объявила Шведская академия. Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена", говорится в сообщении на сайте премии.

Графен представляет собой одиночный слой атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот.

Андрей Гейм родился в Сочи в 1958 г., сейчас имеет голландское гражданство.

В 1982 г. окончил МФТИ, факультет общей и прикладной физики, получил степень кандидата физико-математических наук в Институте физики твердого тела АН СССР.

Работал научным сотрудником в Институте проблем технологии микроэлектроники и особо чистых материалов РАН в подмосковной Черноголовке, Ноттингемском университете, университете Бат (Великобритания), в университете Неймегена (Нидерланды), с 2001 г. - в Манчестерском университете.

В настоящее время Андрей Гейм - руководитель Манчестерского центра по мезонауке и нанотехнологиям, а также глава отдела физики конденсированного состояния.

Константин Новоселов родился в Нижнем Тагиле в 1974 г., сейчас имеет британское и российское гражданство.

В 1997 г. окончил МФТИ, факультет физической и квантовой электроники.

В настоящее время является профессором университета Манчестера.

Совместная работа выходцев из Института проблем технологии микроэлектроники и особо чистых материалов РАН в подмосковной Черноголовке в Университете Манчестера началась в 2001 г., когда Гейм был приглашен на должность директора Центра мезонауки и нанотехнологии Манчестерского университета. Константин Новоселов, стипендиат Фонда Леверхульма, присоединился к новым исследованиям своего соотечественника.

Гейм и Новосёлов - лауреаты премии Европейского Физического общества Europhysics Prize 2008 г. Эта высокая европейская награда присуждается ежегодно с 1975 года. Официальная формулировка присуждения премии размером в 10 тысяч евро: "за открытие и выделение свободного одноатомного слоя углерода, и объяснение его выдающихся электронных свойств".

5 октября 2010 г. стало известно, что Константину Новоселову и Андрею Гейму присуждена Нобелевская премия 2010 года по физике.

Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена" , говорится в сообщении на сайте премии.

Материал подготовлен на основе информации РИА Новости и открытых источников


Если у вас есть бриллианты, знайте: несколько лет назад эти сверкающие камни уступили пальму первенства своему серому кузену графиту, пишут журналисты, сообщая, что вчера Нобелевскую премию получили физики русского происхождения, работающие в Великобритании, Андре Гейм и Константин Новоселов. Полученный ими чудо-материал графен открывает поистине фантастические перспективы в электронике и других областях.

Два выходца из России - Андре Гейм и Константин Новоселов, ныне работающие в Манчестерском университете в Великобритании, - удостоены Нобелевской премии по физике за разработку графена - нового материала с уникальными свойствами, сообщает The Wall Street Journal .

"Путь к Нобелевской премии начался для ученых с банального кусочка скотча и графитового карандашного стержня", - повествует автор публикации. Несколько лет назад Гейму и Новоселову понадобилась тонкая пластина графита для исследования его электропроводящих свойств. Они попробовали "ободрать" тончайшие слои с карандашного стержня, наклеивая и снимая скотч. В итоге удалось получить материал толщиной всего в один атом. Материалы толщиной в один атом - особенные: по своим свойствам они совершенно непохожи на стандартные трехмерные, заметил Гейм.

По мнению ученого, графен идеально подходит для производства быстродействующих транзисторов и в отдаленном будущем может вытеснить кремний. В феврале появилась публикация о графеновом транзисторе, работающем в диапазоне радиочастот, а в июне японские и корейские ученые презентовали первый сенсорный экран из графена, сообщает издание.

Кристаллы толщиной в один атом или одну молекулу - это чудо-материалы, поясняет на страницах The New Scientist сам Андре Гейм. Графен "тверже и прочнее алмаза, но растягивается на четверть своей длины, точно резина", поясняет ученый. Графен не пропускает газы и жидкости, проводит тепло и электричество лучше, чем медь. Графеновые транзисторы работают быстрее кремниевых, с графеном можно проводить небывалые эксперименты в сфере квантовой механики, считает новоиспеченный нобелевский лауреат.

Нобелевскую премию по физике редко получают в 36 лет, нечасто и в 51, но именно таков возраст Константина Новоселова и Андрея Гейма - двух ученых российского происхождения, награжденных в этом году премией, обычно присуждаемой ветеранам научного поприща, пишет испанская El Mundo .

"Несмотря на свою молодость, два российских физика за последние годы уже получили такие престижные премии, как EuroPhysics (2008) и премия Кёрбера. Нобелевская премия, присужденная во вторник, венчает череду наград за открытие графена - нового двухмерного материала с уникальными характеристиками, который через несколько лет способен совершить революцию в электронных устройствах", - отмечает корреспондент.

"Помимо страсти к физике, Андрей Гейм на протяжении всей карьеры демонстрировал отличное чувство юмора", - продолжает издание. В 2001 году он опубликовал работу о вращении Земли в соавторстве с неожиданным коллегой - хомяком Тишей, а 2000 году ему была присуждена Шнобелевская премия за использование магнитного поля для левитации лягушек. По мнению Гейма, чувство юмора и любопытство - два качества, необходимые для хорошего ученого.

Исследования Гейма и Новоселова можно считать прорывом в нанотехнологиях - новой и невероятно многообещающей науке, пишет La Stampa . Известно, что алмазы, как и графит, представляют собой кристаллы углерода. Разница в том, что в алмазе атомы углерода формируют трехмерный кристалл, в то время как графит состоит из многочисленных слоев двухмерного кристалла.

"На атомном уровне свойства материалов могут радикально меняться", - пояснил изданию Марко Полини, эксперт по нанотехнологиям Laboratorio NEST Национального научного центра. И именно в бесконечно маленьком мире графит взял реванш. Графен - материал, состоящий из одиночного слоя атомов углерода, собранных в гексагональную решетку, - обладает большой механической жесткостью и хорошей теплопроводностью. Высокая подвижность носителей заряда делает его перспективным для использования в самых различных областях. Прежде всего, чипы на основе графена могут открыть дорогу к миниатюризации электронных компонентов, и в ближайшие годы графен может стать основой для компьютерных экранов - тонких и невероятно легких, как лист бумаги. Далее: ожидается создание сенсоров, чувствительных к появлению самого минимального количества загрязняющих веществ. Кроме того, будет достаточно добавить один промилле графена, чтобы получить более прочный и устойчивый к высоким температурам пластик. Иными словами, вполне справедливо сказать: "Графен - for ever", пишет итальянская журналистка.

Тоньше волоса, легче шелка, но при этом чрезвычайно прочный: Андре Гейм и Константин Новоселов, выходцы из России, создали поистине удивительный материал под названием графен - и получили за это Нобелевскую премию по физике, пишет SPIEGEL ONLINE . Долгое время считалось, что материал из единичного слоя атомов углерода получить невозможно, но в 2004 году в лаборатории университета Манчестера им удалось получить графен - причем очень простым способом: с помощью обычного скотча и куска графита путем многократного приклеивания.

Открытый материал обладает действительно удивительными свойствами, продолжает издание: квадратный метр решетки графена весит менее миллиграмма, при этом на гамаке из него могла бы с комфортом разместиться кошка.

"Интерес к графену прямо-таки зашкаливает, - признает Корнелиус Нильш из университета Гамбурга. - У нас в Германии существует более 100 рабочих групп, занимающихся исследованием этого материала".

Сам Новоселов, по его словам, был "шокирован" известием о присуждении ему и его коллеге Нобелевской премии. Гейм также не рассчитывал на столь почетную награду, поделился он в беседе с изданием.

Графен и российская реальность

newsru.com
Лауреат Нобелевской премии 2010 года по физике Андрей Гейм в интервью рассказал, что несколько лет назад не смог приехать в Россию из-за бюрократических проблем с получением визы.

"Я пытался в какой-то момент поехать, но мне визу не дали по почте. Во все другие страны дают по почте, а в России не дают. Поскольку у меня было российское гражданство, меня хотят видеть в посольстве в Лондоне", - сказал выходец из России, профессор британского Университета Манчестера в интервью "Первому каналу" . По словам Гейма, несмотря на такие проблемы, он все еще хочет навестить институтских друзей.

В настоящее время Андрей Гейм является гражданином Нидерландов. Ранее Гейм и его коллега Константин Новоселов, который разделил Нобелевскую премию с профессором, были сотрудниками физических институтов в подмосковной Черноголовке. Как стало известно, Новоселов, у которого двойное гражданство - России и Великобритании - в конце октября прилетит в Москву на конференцию по нанотехнологиям.

По словам Новоселова, он до сих пор не верит, что это о нем пишут все английские газеты. Как сообщает "Первый канал", своих учеников профессор Новоселов сильно разочаровал. Они считали, что шеф хоть пару дней будет отмечать свою премию, а он первым делом после сообщения о премии погнал их в лабораторию работать.

Лауреаты наливали поздравлявшим вино и просили рассказывать анекдоты

В Университете Манчестера не стали устраивать пышных торжеств в связи с премией. Председатель Британского королевского научного общества поздравил Гейма и Новоселова по телефону. Тем, кто пришел лично пожать лауреатам руку, они наливали красное вино и просили рассказать свежий анекдот.

The Wall Street Journal
Ultrathin Carbon Earns Nobel