Модели нестационарных временных рядов и их идентификация. Модели стационарных и нестационарных временных рядов и их идентификация

Достаточно часто экономические показатели, представленные в виде временного ряда, имеют сложную структуру. Моделирование таких рядов путем построения модели тренда, сезонности и периодической составляющей не приводит к удовлетворительным результатам. Ряд остатков часто имеет статистические закономерности. Наиболее распространенными моделями стационарных рядов являются модели авторегрессии и модели скользящего среднего.

Будем рассматривать класс стационарных временных рядов. Задача состоит в построении модели остатков временного ряда u t и прогнозирования его значений.

Авторегрессионная модель предназначена для описания стационарных временных рядов. Стационарный процесс удовлетворяет уравнению авторегрессии бесконечного порядка с достаточно быстро убывающими коэффициентами. В частности поэтому авторегрессионная модель достаточно высокого порядка может хорошо аппроксимировать почти любой стационарный процесс. В связи с этим модель авторегрессии часто применяется для моделирования остатков в той или иной параметрической модели, например регрессионной модели или модели тренда.

Марковскими называются процессы, в которых состояние объекта в каждый следующий момент времени определяется только состоянием в настоящий момент и не зависит от того, каким путем объект достиг этого состояния. В терминах корреляционного анализа для временных рядов марковский процесс можно описать следующим образом: существует статистически значимая корреляционная связь исходного ряда с рядом, сдвинутым на один временной интервал, и отсутствует с рядами, сдвинутыми на два, три и т. д. временных интервала. В идеальном случае эти коэффициенты корреляции равны нулю.

u (t )=m u (t -1)+e (t ) , (5.1)

где m - числовой коэффициент |m |<1, e (t ) – последовательность случайных величин, образующих «белый шум» (E(e (t ))=0, E(e (t )e (t +t))=).

Модель (5.1) называется также марковским процессом.

E (u (t ))º0. (5.2)

r (u (t )u (t ±t ))=m t . (5.3)

D u (t )=s 2 /(1-m 2). (5.4)

cov(u (t )u (t ±t))=m t D u (t ). (5.5)

Из (5.3) следует, что при |m | близком к единице дисперсия u (t ) будет намного больше дисперсии e t . Это значит (учитывая (5.2) m =r (u (t )u (t ±1))=r (1), т.е. параметр m может быть интерпретирован как значение автокорреляции первого порядка), что в случае сильной корреляции соседних значений ряда u (t ) ряд слабых возмущений e t будет порождать размашистые колебания остатков u (t ).

Условие стационарности ряда (5.1) определяется требованием |m |<1.


Автокорреляционная функция (АКФ) r (t ) марковского процесса определяется соотношением (5.3).

Частная автокорреляционная функция

r част (t )=r (u (t )u (t +t )) | u (t+ 1)=u (t+ 2)=…=u (t+t -1)=0

может быть вычислена по формуле: r част (2)=(r (2)-r 2 (1))/(1-r 2 (1)). Для второго и выше порядков (см. , с. 413, 414) должно быть r част (t )=0 "t =2,3,… . Это удобно использовать для подбора модели (5.1): если вычисленные по оцененным невязкам u (t )=y t -выборочные частные корреляции статистически незначимо отличаются от нуля при t =2,3,…, то использование модели AR (1) для описания случайных остатков не противоречит исходным данным.

Идентификация модели. Требуется статистически оценить параметры m и s 2 модели (5.1) по имеющимся значениям исходного ряда y t .

Аннотация: Под временными рядами понимают экономические величины, зависящие от времени. При этом время предполагается дискретным, в противном случае говорят о случайных процессах, а не о временных рядах.

Модели стационарных и нестационарных временных рядов, их идентификация

Пусть Рассмотрим временной ряд . Пусть сначала временной ряд принимает числовые значения. Это могут быть, например, цены на батон хлеба в соседнем магазине или курс обмена доллара на рубли в ближайшем обменном пункте. Обычно в поведении временного ряда выявляют две основные тенденции - тренд и периодические колебания.

При этом под трендом понимают зависимость от времени линейного, квадратичного или иного типа, которую выявляют тем или иным способом сглаживания (например, экспоненциального сглаживания) либо расчетным путем, в частности, с помощью метода наименьших квадратов . Другими словами, тренд - это очищенная от случайностей основная тенденция временного ряда.

Временной ряд обычно колеблется вокруг тренда , причем отклонения от тренда часто обнаруживают правильность. Часто это связано с естественной или назначенной периодичностью, например, сезонной или недельной, месячной или квартальной (например, в соответствии с графиками выплаты заплаты и уплаты налогов). Иногда наличие периодичности и тем более ее причины неясны, и задача эконометрика - выяснить, действительно ли имеется периодичность .

Элементарные методы оценки характеристик временных рядов обычно достаточно подробно рассматриваются в курсах "Общей теории статистики" (см., например, учебники ), поэтому нет необходимости подробно разбирать их здесь. (Впрочем, о некоторых современных методах оценивания длины периода и самой периодической составляющей речь пойдет ниже.)

Характеристики временных рядов . Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд рассматривается как случайный процесс (с дискретным временем) основными характеристиками являются математическое ожидание , т.е.

Дисперсия , т.е.

и автокорреляционная функция временного ряда

т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда и .

В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времени , а потому и все перечисленные выше характеристики временного ряда не меняются со временем . В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности . Временные ряды, не являющиеся стационарными, называются нестационарными .

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками . Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа , рассмотренных в , здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными , а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)

Замечание . Как уже отмечалось в "Многомерный статистический анализ" , простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо профессиональное владение матричной алгеброй. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений и непосредственно по временным рядам , в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники. Подчеркнем в очередной раз, что за каждой главой настоящей книги стоит большая область научных и прикладных исследований, вполне достойная того, чтобы посвятить ей много усилий. Однако из-за ограниченности объема книги мы вынуждены изложение сделать конспективным.

Системы эконометрических уравнений

Пример модели авторегрессии . В качестве первоначального примера рассмотрим эконометрическую модель временного ряда, описывающего рост индекса потребительских цен (индекса инфляции). Пусть - рост цен в месяц (подробнее об этой проблематике см. "Эконометрический анализ инфляции"). Тогда по мнению некоторых экономистов естественно предположить, что

(6.1)

где - рост цен в предыдущий месяц (а - некоторый коэффициент затухания, предполагающий, что при отсутствии внешний воздействий рост цен прекратится), - константа (она соответствует линейному изменению величины со временем), - слагаемое, соответствующее влиянию эмиссии денег (т.е. увеличения объема денег в экономике страны, осуществленному Центральным Банком) в размере и пропорциональное эмиссии с коэффициентом , причем это влияние проявляется не сразу, а через 4 месяца; наконец, - это неизбежная погрешность .

Модель (1), несмотря на свою простоту, демонстрирует многие характерные черты гораздо более сложных эконометрических моделей. Во-первых, обратим внимание на то, что некоторые переменные определяются (рассчитываются) внутри модели, как . Их называют эндогенными (внутренними) . Другие задаются извне (это экзогенные переменные). Иногда, как в теории управления, среди экзогенных переменных , выделяют управляемые переменные - те, с помощью которых менеджер может привести систему в нужное ему состояние.

Во-вторых, в соотношении (1) появляются переменные новых типов - с лагами, т.е. аргументы в переменных относятся не к текущему моменту времени, а к некоторым прошлым моментам.

В-третьих, составление эконометрической модели типа (1) - это отнюдь не рутинная операция. Например, запаздывание именно на 4 месяца в связанном с эмиссией денег слагаемом - это результат достаточно изощренной предварительной статистической обработки. Далее, требует изучения вопрос зависимости или независимости величин и . От решения этого вопроса зависит, как выше уже отмечалось, конкретная реализация процедуры метода наименьших квадратов .

С другой стороны, в модели (1) всего 3 неизвестных параметра, и постановку метода наименьших квадратов выписать нетрудно:

Проблема идентифицируемости . Представим теперь модель тапа (6.1) с большим числом эндогенных и экзогенных переменных , с лагами и сложной внутренней структурой. Вообще говоря, ниоткуда не следует, что существует хотя бы одно решение у такой системы. Поэтому возникает не одна, а две проблемы. Есть ли хоть одно решение (проблема идентифицируемости)? Если да, то как найти наилучшее решение из возможных? (Это - проблема статистической оценки параметров.)

И первая, и вторая задача достаточно сложны. Для решения обоих задач разработано множество методов, обычно достаточно сложных, лишь часть из которых имеет научное обоснование. В частности, достаточно часто пользуются статистическими оценками, не являющимися состоятельными (строго говоря, их даже нельзя назвать оценками).

Коротко опишем некоторые распространенные приемы при работе с системами линейных эконометрических уравнений.

Система линейных одновременных эконометрических уравнений . Чисто формально можно все переменные выразить через переменные, зависящие только от текущего момента времени. Например, в случае уравнения (6.1) достаточно положить

Тогда уравнение пример вид

(6.2)

Отметим здесь же возможность использования регрессионных моделей с переменной структурой путем введения фиктивных переменных. Эти переменные при одних значениях времени (скажем, начальных) принимают заметные значения, а при других - сходят на нет (становятся фактически равными 0). В результате формально (математически) одна и та же модель описывает совсем разные зависимости.

Косвенный, двухшаговый и трехшаговый методы наименьших квадратов . Как уже отмечалось, разработана масса методов эвристического анализа систем эконометрических уравнений. Они предназначены для решения тех или иных проблем, возникающих при попытках найти численные решения систем уравнений.

Одна из проблем связана с наличием априорных ограничений на оцениваемые параметры. Например, доход домохозяйства может быть потрачен либо на потребление, либо на сбережение. Значит, сумма долей этих двух видов трат априори равна 1. А в системе эконометрических уравнений эти доли могут участвовать независимо. Возникает мысль оценить их методом наименьших квадратов , не обращая внимания на априорное ограничение, а потом подкорректировать. Такой подход называют косвенным методом наименьших квадратов .

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. В то же время трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и погрешности каждого уравнения, а затем построить оценку для ковариационной матрицы погрешностей, После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов .

Менеджеру и экономисту не следует становиться специалистом по составлению и решению систем эконометрических уравнений, даже с помощью тех или иных программных систем, но он должен быть осведомлен о возможностях этого направления эконометрики, чтобы в случае производственной необходимости квалифицированно сформулировать задание для специалистов-эконометриков.

От оценивания тренда (основной тенденции) перейдем ко второй основной задаче эконометрики временных рядов - оцениванию периода ( цикла ).

Можно сформулировать цели статистического анализа временного ряда следующим образом:

по имеющейся траектории x(1), x(2), …x(N) анализируемого временного ряда x(t) требуется:

1) определить, какие из неслучайных функций (соответствующих трендовому, сезонному и циклическому компонентам) при­сутствуют в разложении , т. е. определить значения индика­торов  i в разложении

2) построить «хорошие» оценки для тех неслучайных функций, которые присутствуют в разложении;

3) подобрать модель, адекватно описывающую поведение «случай­ных остатков u(t), и статистически оценить параметры этой модели.

Успешное решение перечисленных задач является основой для достиже­ния конечных прикладных целей исследования и, в первую очередь, для решения задачи кратко- и среднесрочного прогноза значений временного ряда.

Автоковариационная и автокорреляционная функции

Для идентификации временных рядов удобно использовать специальные функции: автоковариационную и автокорреляционную.

Автоковариационная функция

Из предположения о строгой стационарности временного ряда x(t) ковариация между значениями x(t) и x(t  ) будет зависеть только от величины «сдвига по времени»  (и не будет зависеть от t). Эта ковариация называется автоковариацией (поскольку измеряет ковариацию для различных значений одного и того же временного ряда x(t) и определяется соотношением:

При анализе величины () в зависимости от значения  принято говорить об автоковариационной функции (). Значения автоковариационной функции могут быть статистически оценены по имеющимся наблюдениям временного ряда по формуле

, где =1,2, … N-1. Очевидно

(0)=  2 =М;

()=cov(x(t+), x(t)) = cov(x(t), x(t+)) = cov(x(t), x(t-));

()= cov(x(t), x(t-))= (-).

Автокорреляционная функция

Одно из главных отличий последовательности наблюдений, образующих временной ряд, от случайной выборки заключается в том, что члены временного ряда являются, вообще говоря, статистически взаимозависмыми. Степень тесноты статистической связи между двумя случайными величинами может быть измерена парным коэффициентом корреляции. Так что степень статистической связи между двумя наблюдениями временного ряда, «разнесенными» (по времени) на  единиц, определится величиной коэффициента корреляции

Коэффициент корреляции r() измеряет корреляцию, существующую между членами одного и того же временного ряда, поэтому его принято называть коэффициентом автокорреляции. При анализе изменения величиныr() в зависимости от значенияпринято говорить об автокорреляционной функцииr(). График автокорреляционной функции называют коррелограммой. Автокорреляционная функция, в отличие от автоковариационной, безразмерна. Ее значения могут колебаться в пределах от –1 до +1. Очевидно, чтоr() =r(-), а(0) =1.

Поиск модели, адекватно описывающей поведение случайных остат­ков u(t) анализируемого временного ряда x(t), производят, как правило, в рамках некоторого специального класса случайных временных последовательностей - класса стационар­ных временных рядов. На интуитивном уровне стационарность временно­го ряд а мы связываем с требованием, чтобы он имел постоянное сред­нее значение и колебался вокруг этого среднего с постоянной дисперсией . В некоторых случаях временные последовательности этого класса могут воспроизводить и поведение самого анализируемого временного ряда x(t).

Ряд x(t) называется строго стационар­ным (или стационарным в узком смысле), если совместное распреде­ление вероятностей m наблюдений x(t 1), x(t 2), …, x(t m) такое же, как и для m наблюдений x(t 1 +), x(t 2 +), …x(t m +), при любых m, t 1 , t 2 , …, t m и .

Другими словами, свойства строго стационарного временного ряда не меняются при изменении начала отсчета времени. В частности, при m= 1 из предположения о строгой стационарности временного ряда x(t) следует, что закон распределения вероятностей случайной величины x(t) не зависит от t, а значит, не зависят от t и все его основные числовые характеристики, в том числе: среднее значение М(x(t)) =  и дисперсия D(x(t))= М(x(t) –) 2 =  2 .

Очевидно, значение μ определяет постоянный уровень, относитель­но которого разбросаны значения анализируемого временного ряда x(t), а посто­янная величина  2 характеризует размах этого разброса. Поскольку закон распределения вероятностей случайной величины x(t) одинаков при всех t, то он сам и его основные числовые характеристики могут быть оценены по наблюдени­ям x(1), x(2), …x(N). В частности:

-оценка среднего значения,

- оценка дисперсии.

Под методами сглаживания временного ряда понимается выделение неслучайной составляющей . Предположим, что известен общий вид неслучайной составляющей F(t) для ряда x(t)=F(t,)+ u(t). Это может быть полином, ряд Фурье и т.д. Тогда возникает задача оценки параметров . В такой постановке задачи используются аналитические методы.

Если вид неслучайной составляющей неизвестен F(t), то используются алгоритмические методы. К таким методам относится метод скользящего среднего, лежащий в основе более сложных процедур сглаживания.

Характеристики временных рядов. Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд X(t) рассматривается как случайный процесс (с дискретным временем) основными характеристиками являются математическое ожидание X(t), т.е.

дисперсия X(t), т.е.

и автокорреляционная функция временного ряда X(t)

т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда X(t) и X(s).

В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времени k, а потому и все перечисленные выше характеристики временного ряда не меняются со временем. В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности t-s. Временные ряды, не являющиеся стационарными, называются нестационарными.

Под временным рядом понимают упорядоченную во времени последовательность значений одной или конечного множества случайных величин. В первом случае говорят об одномерном временном ряде, во втором - о многомерном временном ряде. Здесь будут рассматриваться только одномерные временные ряды. Одномерный временной ряд называется стационарным, если его вероятностные характеристики постоянны. Временной ряд называется нестационарным, если хотя бы одна из вероятностных характеристик непостоянна. Последовательность случайных величин у 1 , у 2 , . . . или у -1 , у 0 , у 1 , . . называется случайным процессом с дискретным параметром времени.

Поскольку важна последовательность во времени появления следующего значения временного ряда, а не конкретное значение времени появления, то во временных рядах в качестве аргумента используют номер отсчета значения временного ряда. Например:

x(1), x(2), ... ,x(k), ...

где x(k) - значение временного ряда в k-том по порядку наблюдении; k - номер наблюдения.

В большинстве практических приложений рассматривают стационарные и нестационарные по математическому ожиданию временные ряды с нормальным законом распределения значений ряда. Это означает, что:

стационарный ряд: x(k) є (µ, у 2) , µ = const, у 2 = const;

нестационарный ряд: x(k) є (µ, у 2) , µ = var, у 2 = const.

Ниже приведена реализация стационарного временного ряда:

Прогнозируемость временного ряда.

Для прогнозирования временного ряда необходимо построить его модель. Прогнозируемость ряда возможна лишь тогда, когда существует вероятностная (аналитическая) связь последующих значений ряда от предыдущих. Прогнозируемость стационарного временного ряда определяется с помощью автокорреляционной функции (АКФ):

с(m) = M[(x(k) - µ)*(x(k + m) - µ)]/у 2

где: с(m) - значение автокорреляционной функции на сдвиге m временного ряда x(k)

Оценки АКФ ряда имеют вид:

Очевидно, что с(0) = 1, поскольку это корреляция временного ряда на самого себя.

Стационарный временной ряд прогнозируем, если m>0 существует с(m) ? 0.

Стационарный временной ряд непрогнозируем, если для любого m>0 с(m) = 0. Такой ряд называют "белым шумом".

Поскольку, АКФ это значения коэффициентов корреляции, то она является функцией неслучайных значений.

Оценивание АКФ осуществляется по реализации временного ряда. Если реализация содержит n значений, то оценка автокорреляционной функции имеет вид:

где: r(m) - оценка АКФ; x - среднее значение реализации временного ряда; S 2 - оценка дисперсии реализации временного ряда.

При проверке прогнозируемости временного ряда длина реализации должна быть не менее 20 - 30 наблюдений.

Следует обратить внимание, что прогнозирование временных рядов рассмотренным методом предполагает выполнение двух условий:

  • 1. Случайная величина е(k) "белого шума", как составляющая моделей, должна подчиняться нормальному закону распределению с нулевым математическим ожиданием и конечной дисперсией у е 2 .
  • 2. Дисперсия "белого шума" у е 2 должна быть величиной постоянной.

Формула вычисления прогноза имеет вид:

x(k) = 27,2661 - 0,900766*

где x(k) - прогноз по модели k-го значения временного ряда.

Идентификация модели стационарного временного ряда

Идентификация модели. Для прогнозирования будущих показателей на основе имеющихся временных рядов необходимо идентифицировать модель, которая наилучшим образом описывает процесс порождения выборочного временного ряда. Для идентификации такой модели можно воспользоваться расчетной автокорреляционной функцией. Из множества моделей для описания динамики временных рядов чаще всего используются три: модель белого шума, авторегрессионная модель первого порядка и авторегрессионная модель второго порядка. Если расчетная автокорреляционная функция представляет собой совокупность незначимых автокорреляций, это явное указание на то, что изменчивость данного времени n-ого ряда лучше всего охарактеризовать как "белый шум", или случайные флуктуации.

Основная идея, лежащая в основе идентификации модели временного ряда, остается одной и той же и для простых, и для сложных моделей: соответствие структуры наблюдаемых данных известной структуре, связываемой с определенным классом моделей. После того как модель предварительно идентифицирована, производится оценка ее параметров.

Диагностическая проверка. Так как в основе идентификации модели временного ряда лежит до некоторой степени субъективная процедура, иногда рекомендуется оценить адекватность идентифицированной модели путем проверки значимости автокорреляционной функции остатков данной модели. Это целесообразно, поскольку остатки модели временного ряда не являются автокоррелированными.

Однако автокорреляционная функция стационарного временного ряда не позволяет однозначно идентифицировать модель ряда. Это возможно с использованием второй дополнительной функции - частной автокорреляционной функции (ЧАКФ). Значения ЧАКФ - это значение m-го коэффициента в представлении временного ряда процессом авторегрессии порядка m. Пусть имеется стационарный временной ряд x(k). Рассмотрим следующие представления временного ряда через процесс авторегрессии:

x(k) - м = a 11 *

x(k) - м = a 12 * + a 22 *

x(k) - м = a 13 * + a 23 * + a 33 *

... ... ... ... ... ... ... ... ...

x(k) - м = a 1 * + a 2 * + a 33 * + ... + a mm *

Значениями ЧАКФ для сдвигов 1, 2, 3, ..., m являются значения коэффициентов: a 11 , a 22 , a 33 , ..., a mm . График ЧАКФ может иметь вид:

После оценивания ЧАКФ необходимо для каждого m проверить гипотезу о равенстве нулю соответствующего коэффициента частной автокорреляции. В программах статистической обработки данных для каждого из коэффициентов вычисляются критические значения, которые на графике оценки ЧАКФ приобретают вид контрольных границ.

При идентификации модели как правило пользуются следующими правилами:

  • 1. Если h первых значений АКФ отличны от нуля, а ЧАКФ по модулю асимптотически стремится к нулю, то имеет место процесс АРСС(0,h) - скользящего среднего порядка h.
  • 2. Если h первых значений ЧАКФ отличны от нуля, а АКФ по модулю асимптотически стремится к нулю, то имеет место процесс АРСС(h,0) - авторегрессии порядка h.
  • 3. Если значения АКФ и ЧАКФ по модулю асимптотически стремятся к нулю, то имеет место смешанный процесс АРСС(p,q).

ВВЕДЕНИЕ

Существующие модели временных рядов широко используются в процессе изучения динамики реальных явлений различной природы. Они зачастую применяются в исследованиях динамики грузо - и пассажиропотоков, товарных и складских запасов, миграционных процессов, анализе химических процессов, моделировании разнообразных природных событий. Наиболее активно модели временных рядов применяются в анализе финансовых рынков, при оценке изменений финансовых показателей, прогнозировании цен на различные товары, курсов акций, соотношений курсов валют и т. п.

Широкий круг реальных общественных и естественных процессов обычно может быть представлен набором последовательных значений оцениваемого показателя у 1 , у 2 ,..., у t ,..., у Т, которые фиксируются в определенные моменты времени t=1,2,... Т, так что интервал (t, t+1) является постоянным. Указанный набор значений у t , t=1,2,... обычно называется временным рядом (временной серией). Такой ряд представляет собой дискретный временной процесс.

Изменения значений у t во времени в реальной жизни обычно происходят под воздействием каких-либо причин, факторов. Однако их многообразие, сложность измерения, неопределенность в предположениях о существовании взаимосвязей с переменной у значительно затрудняет обоснование и построение «подходящей» для описания процесса у t , t=1,2,... многофакторной эконометрической модели классического типа. Поэтому часто выдвигается предположение о том, что совокупное влияние этих факторов формирует внутренние закономерности в отношении процесса у t .

Такое предположение направлено на применение для описания реальных временных процессов эконометрических моделей из специфического класса моделей временных рядов.

МОДЕЛИ СТАЦИОНАРНЫХ ВРЕМЕННЫХ РЯДОВ

Особенности стационарных временных рядов и тесты на стационарность

Все модели временных рядов имеют общее свойство, которое основано на предположении значительной зависимости текущего значения уровня показателя y t от его предыстории. Иными словами уровень показателя y t генерируется значениями y t-1 , y t-2 ,... на базе характерных для данного временного ряда закономерностях.

Указанное допущение выражается общим уравнением:

y t = f(y t-1 , y t-2 , …) + t (1.1)

где t - ошибка модели в момент t.

Здесь функция f отражает характер взаимосвязей, существующих в рассматриваемом временном ряду у t , t=1,2,... Удачный подбор функции f обусловливает высокую степень приближения правой «детерминированной» части выражения (1.1) к реальным значениям ряда. Степень этого приближения обычно характеризуется оценками и свойствами ошибки ряда t , t=1,2,... в данном случае имеется в виду, прежде всего минимальная дисперсия, соответствие белому шуму и т. п.

Для широкого круга процессов функция f имеет линейный вид. Например,

y t = а 1 y t-1 + а n y t-n + t .

Линейные модели временных рядов применяются, как правило, для описания стационарных процессов, при этом имеются в виду стационарные процессы второго порядка. У стационарного процесса n-го порядка значения всех своих моментов порядка n и ниже на всех временных отрезках, входящих в интервал t=1,2,..., Т отличаются постоянством. Строго стационарные процессы отличаются тем, что у них моменты всех порядков постоянны. Из сказанного следует, что для любых двух интервалов времени (Т 1 , Т 2) и (Т 3 , Т 4) для стационарного процесса второго порядка у t должны выполняться условия:

равенство математических ожиданий;

Равенство дисперсий;

Равенство однопорядковых коэффициентов автокорреляций.

Математически данные условия выражаются соотношениями:


где - оценки математических ожиданий;

D 1 (y), D 2 (y) - оценки дисперсий;

Оценки коэффициентов автокорреляции i-го порядка процесса у t на 1-ом и на 2-ом интервалах соответственно;

Среднее значение процесса (оценка математического ожидания) на интервале (1,Т);

D(y) - оценка дисперсии процесса на интервале (1,Т).

При реальном изучении стационарных временных рядов равенства (1.2)-(1.4) рассматриваются в статистическом смысле. Это дает основания утверждать, что даже при неполном соответствии равенство гипотеза о постоянстве математического ожидания процесса у t может быть принята в случае удовлетворения значений и определенному статистическому критерию.

С целью проверки соответствия временного ряда у t , t=1,2,... стационарному процессу и выполнимости условий (1.2)-(1.4) применяются различные тесты. Если результаты одного из них не дают возможности утверждать об истинности или ложности выдвинутой гипотезы, то может возникнуть необходимость использовать несколько тестов для проверки одного и того же условия.

Всю совокупность тестов на стационарность временных рядов можно разделить на три основные группы: непараметрические, полупараметрические и параметрические тесты.

Непараметрические тесты не выдвигают заранее каких-либо сведений о законе распределения тестируемого временного ряда, его параметрах. Они основаны на изучении взаимосвязей между порядками следования образующих его значений, позволяют выявить наличие или отсутствие закономерностей в продолжительности и (или) чередовании их серий, образованных, например, последовательностями единиц совокупности с одинаковыми знаками, сменой знаков у этих единиц и т.п.

В полупараметрических тестах используются относительно слабые предположения о характере распределения значений временного ряда. Они отражают общие свойства функции распределения приростов значений ряда - симметричности, расположения квантилей.

При использовании методов этой группы оценки параметров распределения оцениваются по порядковым статистикам: среднее по медиане, среднеквадратическое отклонение - по размаху уровней ряда и т. п.

Параметрические тесты используют при относительно строгих предположениях о законе распределения временного ряда и его параметров. Данные тесты позволяют оценить степень приближенности эмпирических (наблюдаемых) характеристик распределения временного ряда к рассчитанным теоретическим уровням.

Именно эта степень приближенности позволяет принять или отвергнуть гипотезу о соответствии свойств рассматриваемого ряда стационарному процессу.