Интерфейсы rs232 и rs485 сравнение. Физические интерфейсы RS485 и RS422

В условиях промышленного применения беспроводные линии передачи данных никогда не смогут полностью заменить проводные. Среди последних самым распространенным и надежным до сих пор остается последовательный интерфейс RS-485. А производителем наиболее защищенных от внешних воздействий и разнообразных по конфигурации и степени интеграции приемопередатчиков для него, в свою очередь, остается компания Maxim Integrated.

Несмотря на рост популярности беспроводных сетей, наиболее надежную и устойчивую связь, особенно в жестких условиях эксплуатации, обеспечивают проводные. Правильно спроектированные проводные сети позволяют реализовать эффективную связь в промышленных приложениях и в системах автоматизированного управления производственными процессами, обеспечивая устойчивость к помехам, электростатическим разрядам и перенапряжениям. Отличительные особенности интерфейса RS-485 обусловили его широкое применение в индустрии.

Сравнение интерфейсов RS-485 и RS-422

Приемопередатчик RS-485 является наиболее распространенным интерфейсом физического уровня для реализации сетей с последовательной передачей данных, предназначенных для жестких условий эксплуатации в промышленных применениях и в системах автоматизированного управления зданиями. Данный стандарт последовательного интерфейса обеспечивает обмен данными с высокой скоростью на сравнительно большое расстояние по одной дифференциальной линии (витой паре). Основная проблема применения RS-485 в промышленности и в системах автоматизированного управления зданиями состоит в том, что электрические переходные процессы, возникающие при быстрой коммутации индуктивных нагрузок, электростатические разряды, а также импульсные перенапряжения, воздействуя на сети автоматизированных систем управления, способны исказить передаваемые данные или привести к выходу их из строя.

В настоящее время существует несколько типов интерфейсов передачи данных, каждый из которых разработан для конкретных применений с учетом требуемого набора параметров и структуры протокола. К числу интерфейсов последовательной передачи данных относятся CAN, RS-232, RS-485/RS-422, I2 C, I2 S, LIN, SPI и SMBus, однако RS-485 и RS-422 по-прежнему остаются наиболее надежными, особенно в жестких условиях эксплуатации.

Во многом схожи, однако имеют некоторые существенные отличия, которые необходимо учитывать при проектировании систем передачи данных. В соответствии со стандартом TIA/EIA-422, интерфейс RS-422 специфицирован для промышленных применений с одним ведущим устройством шины данных, к которой может быть подключено до 10 ведомых устройств (рис. 1). Он обеспечивает передачу на скорости до 10 Мбит/с, используя витую пару, что позволяет повысить помехоустойчивость и достичь максимально возможной дальности и скорости передачи данных. Типичные области применения RS-422 - автоматизация производственных процессов (производство химикатов, пищевое производство, бумажные фабрики), комплексная автоматизация производства (автомобильная и металлообрабатывающая промышленность), системы вентиляции и кондиционирования, системы безопасности, управление двигателями и контроль за перемещением объектов.

Рис. 1. Интерфейс RS-422 с подключением нескольких приемных устройств к общей двухпроводной линии связи

RS-485 обеспечивает более высокую гибкость благодаря возможности использования нескольких ведущих устройств на общей шине, а также увеличения максимального числа устройств на шине с 10 до 32. Согласно стандарту TIA/EIA-485, интерфейс RS-485 по сравнению с RS-422 имеет более широкий диапазон синфазного напряжения (-7…12 В вместо ±7В) и несколько меньший диапазон дифференциального напряжения (±1,5 В вместо ±2 В), что обеспечивает достаточный уровень сигнала приемника при максимальной нагрузке линии. Используя расширенные возможности многоточечной шины данных, можно создавать сети устройств, подключенных к одному последовательному порту RS-485. Благодаря высокой помехоустойчивости и возможности многоточечных подключений RS-485 является наилучшим среди последовательных интерфейсов для использования в промышленных распределенных системах, подключаемых к программируемому логическому контроллеру (PLC), графическому контроллеру (HMI) или другим контроллерам для сбора данных. Поскольку RS-485 является расширенным вариантом RS-422, все устройства RS-422 могут подключаться к шине, управляемой ведущим устройством RS-485. Типичные области применения для RS-485 аналогичны перечисленным выше областям применения RS-422, при этом более частое использование RS-485 объясняется его расширенными возможностями.

RS-485 - самый популярный промышленный интерфейс

Стандарт TIA/EIA-485 допускает использование RS-485 на расстоянии до 1200 м. На более коротких дистанциях скорости передачи данных - более 40 Мбит/с. Использование дифференциального сигнала обеспечивает интерфейсу RS-485 более высокую дальность, однако скорость передачи данных уменьшается по мере увеличения длины линии. На скорость передачи данных влияет также площадь сечения проводов линии и число устройств, подключенных к ней. При необходимости получения одновременно большой дальности и высокой скорости передачи данных рекомендуется использовать приемопередатчики RS-485 со встроенной функцией высокочастотной коррекции, например, MAX3291. Интерфейс RS-485 может использоваться в полудуплексном режиме с применением одной витой пары проводов или в дуплексном режиме с одновременными передачей и приемом данных, что обеспечивается использованием двух витых пар (четыре провода). В многоточечной конфигурации в полудуплексном режиме RS-485 способен поддерживать до 32 передатчиков и до 32 приемников. Однако микросхемы приемопередатчиков нового поколения имеют более высокий входной импеданс, что позволяет снизить нагрузку приемника на линию от 1/4 до 1/8 стандартного значения. Например, при использовании приемопередатчика MAX13448E число приемников, подключаемых к шине RS-485, может быть увеличено до 256. Благодаря расширенному многоточечному интерфейсу RS-485 имеется возможность построения сетей различных устройств, подключенных к одному последовательному порту, как показано на рис. 2.

Рис. 2. Многоточечная полудуплексная приемопередающая система, используемая в промышленных приложениях

Чувствительность приемника составляет ±200 мВ. Следовательно, для распознавания одного бита данных уровни сигнала в точке подключения приемника должны быть больше +200 мВ для нуля и меньше -200 мВ для единицы (рисунок 3). При этом приемник будет подавлять помехи, уровень которых находится в диапазоне ±200 мВ. Дифференциальная линия обеспечивает также эффективное подавление синфазных помех. Минимальное входное сопротивление приемника составляет 12 кОм, выходное напряжение передатчика находится в диапазоне ± 1,5…± 5 В.

Рис. 3. Минимальные уровни сигналов в линии RS-485

Проблемы, связанные с использованием последовательного интерфейса в промышленной среде

Разработчики промышленных систем сталкиваются со сложными задачами по обеспечению их надежной эксплуатации в электромагнитной обстановке, способной вывести из строя оборудование или нарушить работу цифровых систем передачи данных. Одним из примеров подобных систем является автоматическое управление технологическим оборудованием на автоматизированном промышленном предприятии. Контроллер, управляющий процессом, измеряет его параметры, а также параметры окружающей среды, и передает команды исполнительным устройствам либо формирует аварийные оповещения. Промышленные контроллеры представляют собой, как правило, микропроцессорные устройства, архитектура которых оптимизирована для решения задач данного промышленного предприятия. Линии передачи данных топологии «точка-точка» в таких системах подвержены сильным электромагнитным помехам от воздействия окружающей среды.

Преобразователи постоянного напряжения, используемые в промышленном производстве, работают с высокими входными напряжениями и обеспечивают изолированные от входа напряжения для питания нагрузки. Для питания устройств распределенной системы, не имеющих собственного сетевого источника питания, используются напряжения 24 или 48 В DC. Питание оконечной нагрузки осуществляется напряжением 12 или 5 В, полученным путем преобразования входного напряжения. Системам, обеспечивающим связь с удаленными датчиками или исполнительными устройствами, требуется защита от переходных процессов, электромагнитных помех и разности потенциалов земли.

Многие компании, такие как Maxim Integrated, прилагают большие усилия, чтобы интегральные микросхемы для промышленных применений отличались высокой надежностью и устойчивостью к неблагоприятной электромагнитной обстановке. Приемопередатчики RS-485 производства компании Maxim содержат встроенные цепи защиты от высоковольтных электростатических разрядов и импульсных перенапряжений и обладают возможностью «горячей» замены без потери данных в линии.

Защита систем передачи данных от неблагоприятных внешних воздействий

Усиленная защита от ЭСР

Электростатический разряд (ЭСР) возникает при соприкосновении двух противоположно заряженных материалов, вследствие чего происходит перенос статических зарядов и формируется искровой разряд. ЭСР часто возникает при контакте людей с окружающими предметами. Искровые разряды, возникающие при небрежном обращении с полупроводниковыми приборами, могут существенно ухудшить их характеристики или привести к полному разрушению полупроводниковой структуры. ЭСР может возникнуть, например, при замене кабеля или простом прикосновении к порту ввода-вывода и привести к отключению порта вследствие выхода из строя одной или нескольких микросхем интерфейса (рис. 4).

Рис. 4. Результат воздействия электростатического разряда на кристалл микросхемы с недостаточным уровнем защиты

Рис. 5. Упрощенная схема встроенной цепи защиты порта ввода-вывода от ЭСР

Подобные аварии могут приводить к значительным убыткам, так как повышают стоимость гарантийного ремонта и воспринимаются потребителями как следствие низкого качества продукта. В промышленном производстве ЭСР представляет собой серьезную проблему, способную причинить убытки в миллиарды долларов ежегодно. В реальных условиях эксплуатации ЭСР может привести к отказу отдельных компонентов, а иногда и системы в целом. Для защиты интерфейсов передачи данных могут использоваться внешние диоды, однако некоторые интерфейсные микросхемы содержат встроенные компоненты защиты от ЭСР и не требуют дополнительных внешних цепей защиты. На рис. 5 показана упрощенная функциональная схема типовой встроенной цепи защиты от ЭСР. Импульсные помехи в сигнальной линии ограничиваются диодной схемой защиты на уровнях напряжения питания VCC и земли и, таким образом, защищают внутреннюю часть схемы от повреждений. Производимые в настоящее время микросхемы интерфейсов и аналоговые коммутаторы со встроенной защитой от ЭСР в основном соответствуют стандарту МЭК (IEC) 61000-4-2.

Компания Maxim Integrated инвестировала значительные средства в разработку микросхем с надежной встроенной защитой от ЭСР и в настоящее время занимает лидирующие позиции в производстве приемопередатчиков интерфейсов от RS-232 до RS-485. Данные устройства выдерживают воздействие испытательных импульсов ЭСР, соответствующих МЭК (IEC) 61000-4-2 и JEDEC JS-001, непосредственно на порты ввода-вывода. Решения компании Maxim в области защиты от ЭСР отличаются надежностью, доступностью, отсутствием дополнительных внешних компонентов и меньшей стоимостью по сравнению с большинством аналогов. Все микросхемы интерфейсов производства этой компании содержат встроенные элементы, обеспечивающие защиту каждого вывода от ЭСР, возникающих в процессе производства и эксплуатации. Приемопередатчики семейства MAX3483AE/ MAX3485AE обеспечивают защиту выходов передатчиков и входов приемников от воздействия высоковольтных импульсов амплитудой до ±20 кВ. При этом сохраняется нормальный режим работы изделий, не требуется выключения и повторного включения питания. Кроме того, встроенные элементы защиты от ЭСР обеспечивают функционирование при включении и выключении питания, а также в дежурном режиме с низким энергопотреблением.

Защита от перенапряжений

В промышленных применениях входы и выходы драйверов RS-485 подвержены сбоям, возникающим в результате импульсных перенапряжений. Параметры импульсных перенапряжений отличаются от ЭСР - в то время как длительность ЭСР обычно находится в диапазоне до 100 нс, длительность импульсных перенапряжений может составлять 200 мкс и более. Причинами возникновения перенапряжений могут быть ошибки проводного монтажа, плохие контакты, поврежденные или неисправные кабели, а также капли припоя, которые могут образовывать токопроводящее соединение между силовыми и сигнальными линиями на печатной плате или в разъеме. Поскольку в промышленных системах электропитания используются напряжения, превышающие 24 В, воздействие таких напряжений на стандартные приемопередатчики RS-485, не имеющие защиты от перенапряжений, приведет к их выходу из строя в течение нескольких минут или даже секунд. Для защиты от импульсных перенапряжений обычные микросхемы интерфейса RS-485 требуют дорогостоящих внешних устройств, выполненных на дискретных компонентах. Приемопередатчики RS-485 со встроенной защитой от перенапряжений способны выдерживать синфазные помехи в линии передачи данных до ±40, ±60 и ±80 В. Компания Maxim производит линейку приемопередатчиков RS-485/RS-422 MAX13442E/ MAX13444E, устойчивых к постоянным напряжениям на входах и выходах до ±80 В относительно земли. Элементы защиты функционируют независимо от текущего состояния микросхемы, - включена ли она, выключена или находится в дежурном режиме, - что позволяет характеризовать данные приемопередатчики как наиболее надежные в отрасли, идеально подходящие для промышленных применений. Приемопередатчики производства компании Maxim сохраняют работоспособность при перенапряжениях, обусловленных замыканием силовых и сигнальных линий, ошибками проводного монтажа, неправильным подключением разъемов, дефектами кабелей и неправильной эксплуатацией.

Устойчивость приемников к неопределенным состояниям линии

Важной характеристикой микросхем интерфейса RS-485 является невосприимчивость приемников к неопределенным состояниям линии, что гарантирует установку высокого логического уровня на выходе приемника при разомкнутых или замкнутых входах, а также при переходе всех передатчиков, подключенных к линии, в неактивный режим (высокоимпедансное состояние выходов). Проблема корректного восприятия приемником сигналов замкнутой линии данных решается путем смещения порогов входного сигнала до отрицательных напряжений -50 и -200 мВ. Если входное дифференциальное напряжение приемника VA - VB больше или равно -50 мВ - на выходе R0 устанавливается высокий уровень. Если VA - VB меньше или равно -200 мВ - на выходе R0 устанавливается низкий уровень. При переходе всех передатчиков в неактивное состояние и наличии в линии оконечной нагрузки дифференциальное входное напряжение приемника близко к нулю, вследствие чего на выходе приемника устанавливается высокий уровень. При этом запас помехоустойчивости по входу составляет 50 мВ. В отличие от приемопередатчиков предыдущего поколения, пороги -50 и -200 мВ соответствуют значениям ±200 мВ, установленным стандартом EIA/TIA-485.

Возможность «горячей» замены

Рис. 6. Упрощенная структурная схема защиты входа DE при горячей замене

RS-485 используется для обмена данными между несколькими устройствами по одной двухпроводной линии связи (витой паре) в полудуплексном режиме. Передача выполняется одновременно только в одну сторону. Прием при этом невозможен. Для приема данных требуется переключения приёмопередатчика в режим приема.
По электрическим характеристикам и принципам передачи данных RS-422 полностью совместим с RS-485, но является дуплексным. В нем одна витая пара постоянно используется для приема, а другая для передачи данных.

Уровни сигналов RS-485, RS-422
Передача данных идёт по двум линиям, A и B, представляющим собой витую пару (два скрученных провода). Используется принцип дифференциальной передачи одного сигнала. По проводу A идет исходный сигнал, по проводу B противофазный. Когда на одном проводе логическая 1 , на другом логический 0 и наоборот. Этим достигается высокая устойчивость к синфазной помехе, действующей на оба провода одинаково. Электромагнитная помеха, проходя через участок линии связи, наводит в каждом проводе одинаковый потенциал, при этом информативная разность потенциалов остается без изменений.
Передатчик должен обеспечивать уровень сигнала 1,5 В при максимальной нагрузке (32 стандартных входа и 2 терминальных резистора) и не более 6 В без нагрузки. На стороне приемника минимальный уровень принимаемого сигнала должен быть не менее 200 мВ.

Аппаратная реализация
RS-422 - полнодуплексный интерфейс. Прием и передача идут по двум отдельным парам проводов. На каждой паре проводов может быть только по одному передатчику. Реализован в микросхемах MAX488, MAX490.
RS-485 - полудуплексный интерфейс. Прием и передача идут по одной паре проводов с разделением по времени. В сети может быть много передатчиков, так как они могут отключаются в режиме приема. Реализован в микросхемах ST485, MAX485.

Расстояние и скорость передачи данных

Скорость Расстояние
62,5 кбит/сек 1200 м
375 кбит/сек 300 м
2,4 мбит/сек 100 м
10 мбит/сек 10 м
BORDER>

Количество соединяемых устройств в линии RS-485
Количество устройств, подключаемых к одной линии интерфейса, зависит входного сопротивоения приемников. Входное сопротивление приемника по стандарту должно быть больше или равно 12 кОм. Такое сопротивление соответствует единичной нагрузке (unit load, UL). Один передатчик рассчитан на управление 32 стандартными приемниками. Выпускаются приемники с нагрузкой 1/2 UL, 1/4 UL, 1/8 UL. При использовании таких приемников общее число устройств может быть увеличено соответственно до 64, 128 или 256.

Согласование
Электрический сигнал отражается от открытых концов линии передачи. Если расстояние достаточно большое, фронт сигнала, отразившийся в конце линии и вернувшийся обратно, может исказить текущий или следующий сигнал. В таких случаях нужно каким-то образом подавлять эффект отражения.
На удаленном конце линии, между проводниками витой пары включають резистор с номиналом равным волновому сопротивлению линии. Электромагнитная волна дошедшая до "тупика" поглощается на резисторе. Отсюда его названия - согласующий резистор или "терминатор". Номинальное сопротивление согласующего резистора соответствует волновому сопротивлению кабеля и обычно составляет 120 Ом.

Резистор может быть запаян на контакты кабельных разъемов у конечных устройств. Иногда резисторы бывают смонтированы в самом устройстве и для подключения резистора нужно установить перемычку (как в нашей продукции VTR-232/485, VTR-E/485, USB-485M).

Защитное смещение
При отсоединении приемника от линии, либо при отсутствии в линии активных передатчиков, уровень электрического сигнала на проводах A и B может быть произвольным. Чтобы избежать выдачи ошибочных сигналов на приемник UART, необходимо установить подтяжку входа А к питанию, а B - к "земле".

В выпускаемой нами продукции (VTR-232/485, VTR-E/485, USB-485M ...) установлены резисторы защитного смещения номиналом 680 Ом.


При работе RS-485 на передачу, выход приемника RO переводится в третье состояние и ножка RX контроллера (приемник UART) "повисает в воздухе". В результате, во время передачи на приемнике UART любая помеха будет принята за входной сигнал. Для исключения этой ситуации необходимо выход приемника RO подтягивать к логической 1.

В выпускаемой нами продукции (VTR-232/485, VTR-E/485, USB-485M ...) установлен резистор подтяжки выхода приемника номиналом 10 кОм.


При включении питания или перезагрузке оборудования по сигналу "Reset", контроллеру требуется несколько милисекунд на инициализацию. Получается ситуация, при которой питание на микросхему приемопередатчика RS-485/422 уже подано, но входы разрешения приемника /RE и передатчика DE "висят в воздухе". В результате, приемопередатчик может по помехе открыться на передачу и все время пока микроконтроллер иницализируется передавать в работающую линию мусор. Для исключения этого необходимо резистором подтянуть включение передатчика к “земле”. Таким образом, сразу при включении питания передатчик включен на прием и не сорит в линию.

В выпускаемой нами продукции (VTR-232/485, VTR-E/485, USB-485M ...) установлен резистор подтяжки включения передатчика номиналом 10 кОм.


Устройства зачастую находятся на большом расстоянии друг от друга, поэтому обычно требуется гальваническая развязка, функции которой – разрыв общей "земляной" цепи, защита всей системы от высоковольтных переходных процессов, уменьшение помех и искажений сигналов, а также увеличение степени электробезопасности.

Технические характеристики стандартов RS-485 и RS-422.

Параметр RS-422 RS-485
Допустимое число Tx и Rx 1 Tx, 10 Rx 32 Tx, 32 Rx
Максимальная длина кабеля 1200 м 1200 м
Максимальная скорость передачи данных 10 мбит/с 10 мбит/с
Диапазон напряжений "1" передатчика +2...+10 В +1.5...+6 В
Диапазон напряжений "0" передатчика -2...-10 В -1.5...-6 В
Максимальный ток короткого замыкания передатчика 150 мА 250 мА
Допустимое сопротивление нагрузки передатчика 100 Ом 54 Ом
Чувствительность по входу Rx ± 200 мВ ± 200 мВ
Входное сопротивление приемника 4 кОм 12 кОм
Диапазон напряжений входного сигнала Rx ± 7 В -7...+12 В
Уровень логической единицы Rx > 200 мВ > 200 мВ
Уровень логического нуля Rx
BORDER>

Интерфейс стандарта EIA RS232C предназначен для последовательной связи двух
устройств. Он является общепринятым и широко используется в аппаратных комплексах с
подсоединением внешнего оборудования к персональному компьютеру. Интерфейс
RS/232C предусматривает использование «несимметричных» передатчиков и
приемников, при этом передача данных осуществляется с помощью «несимметричного»
сигнала по двум линиям – ТхD и RxD, а амплитуда сигнала измеряется относительно линии
GND («нуля»). Логической единице соответствует диапазон значений амплитуды
сигнала (напряжения) от –12 до –3 В, логическому нулю – от +3 до +12 В. Диапазон от
–3 до +3 В соответствует зоне нечувствительности, определяющей гистерезис приемника.
Несимметричность сигнала обуславливает низкую помехозащищенность данного
интерфейса, особенно при промышленных помехах. Наличие линий приема (RxD) и передачи
(TxD) данных позволяет поддерживать полнодуплексную передачу информации, т.е.
одновременно информация может как передаваться, так и приниматься.

Достоинства - простота.

Недостатки - к одному порту подключается только одно устройство, дальность передачи сигналов без дополнительных примочек - всего несколько метров

Для управления потоком данных наиболее широко используется аппаратный способ
управления. Для корректной передачи данных необходимо, чтобы приемник находился в
состоянии готовности к приему информации. При аппаратном способе управления
используется сигнал RTS/CTS, который позволяет остановить передачу данных, если
приемник не готов к их приему. Аппаратное управление потоком данных обеспечивает самую
быструю реакцию передатчика на состояние приемника.
При проектировании промышленных систем автоматизации наибольшее
распространение получили информационные сети, основанные на интерфейсе стандарта
EIA RS485. В отличие от RS/232, этот интерфейс предусматривает передачу данных с
помощью «симметричного» (дифференциального) сигнала по двум линиям (А и В)
(см.рисунок) и использование дополнительной линии для выравнивания потенциалов
заземления устройств, объединенных в сеть стандарта RS/485. Логический уровень сигнала
определяется разностью напряжений на линиях (А – В), при этом логической единице
соответствует диапазон значений напряжения от +0,2 до +5 В, а логическому нулю – диапазон
значений от –0,2 до –5 В. Диапазон от –0,2 до +0,2 В соответствует зоне нечувствительности
приемника. При использовании данного интерфейса максимальная длина линии связи между
крайними устройствами может составлять до 1200 м. При этом в максимально удаленных
друг от друга точках сети рекомендуется устанавливать оконечные согласующие резисторы
(терминаторы), позволяющие компенсировать волновое сопротивление кабеля и
минимизировать амплитуду отраженного сигнала.

Сопротивления согласующих резисторов зависит от длины линии и колличества приборов. Оно должно быть в пределах от 100 до 620 ОМ.

Оба указанных интерфейса поддерживаютасинхронный режим передачи. Данные
посылаются блоками (кадрами), формат которых представлен на рис. 1.2. Передача каждого
кадра начинается со старт/бита, сигнализирующего приемнику о начале передачи, за
которым следуют биты данных и бит четности. Завершает посылку стоп/бит, гарантирующий
паузу между посылками.
Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150,
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с. Количество бит данных
может составлять 5, 6, 7 или 8 (5/ и 6/битные форматы распространены незначительно).
Количество стоп/бит может составлять 1, 1,5 или 2 («полтора бита» означает только
длительность стопового интервала).

В интерфейсах RS-422 и RS-485 устранены недостатки интерфейса RS-232, который широко используется в персональных компьютерах. В основе построения интерфейсов RS-422/RS-485 лежит принцип дифференциальной передачи данных. Суть его заключается в передаче одного сигнала по двум проводам, скрученных между собой и образующих витую пару. Обычно один провод условно именуют как ‘A’, а другой – ‘B’. Полезным сигналом является разность потенциалов между проводами A и B: U A – U B = U AB . Для организации интерфейсов необходимы линейные передатчики с дифференциальными выходами и линейные приемники с дифференциальными входами.

На рис. 1 приведено условное изображение линейного передатчика интерфейсов RS-422/RS-485 и временная диаграмма его выходного сигнала. Передатчик выдает напряжение от 2 до 6 В между выводами A и B. Передатчик также имеет вывод C общей точки (провода) схемы. В отличие от интерфейса RS-232C общий провод здесь не используется для определения состояния линии данных, а применяется только для присоединения сигнального заземления. Если на выходе передатчика 2 < U AB < 6 В, то это соответствует логическому 0, а диапазон -6 < U AB < -2 В соответствует логической 1.

Рис. 1. Передатчик интерфейсов RS-422/RS-485:

а) - условное обозначение; б) - временная диаграмма выходного сигнала U AB

Линейный передатчик интерфейса RS-485 должен обязательно иметь вход управляющего сигнала «Разрешение». Назначение этого сигнала – соединять выходы передатчика с линейными выводами A и B. Если сигнал «Разрешение» находится в состоянии «Выключено» (обычно логический 0), то передатчик будет отсоединен от линии. Состояние отключения линейного передатчика обычно называют его третьим или Z-состоянием.

Дифференциальный приемник анализирует сигналы из линии связи, поступающие на его входы A и B. Если на входе приемника U A – U B = U AB > 0,2 В, то это соответствует логическому 0, если U A – U B < -0,2 В, то это логическая 1. Диапазон | U A – U B | < 0,2 В является зоной нечувствительности (гистерезисом), защищающей от воздействия помех. Линейный приемник также должен иметь вывод C общего провода схемы, чтобы выполнить сигнальное заземление.



Применение дифференциального метода передачи сигналов обеспечивает хорошую помехоустойчивость интерфейсов. Для аппаратной реализации интерфейса используются микросхемы приемопередатчиков (трансиверов) с дифференциальными входами/выходами, подключаемыми к линии, и цифровыми входами/выходами, подключаемыми к модулю UART микроконтроллера.

Сравнение интерфейсов RS-422 и RS-485. Стандарт определяет RS-422 как двухточечный интерфейс с одним передатчиком и до десяти приемников. На рис. 2 приведена схема подключения устройств к линиям интерфейса для симплексного (одностороннего) обмена. Для дуплексного обмена нужна вторая пара проводов с таким же подключением устройств.

Рис. 2. Подключение устройств к линии связи интерфейса RS-422

Стандарт определяет RS-485 как многоточечный интерфейс, допускающий присоединение к одной линии до 32 передатчиков, приемников или их комбинаций. На рис. 3 приведена схема подключения устройств к линиям интерфейса для полудуплексного обмена. Дифференциальные входы приемников интерфейсов RS-422/485 защищают от действия помех, но при этом должно осуществляться соединение общих точек C устройств между собой и с шиной заземления. При большой протяженности линии связи для соединения общих точек используется дополнительный третий провод интерфейса. Если применяется экранированная витая пара, то экран можно использовать в качестве третьего провода.

Рис. 3. Подключение устройств к линии связи интерфейса RS-485

Согласование сопротивлений в линии связи. При больших расстояниях между устройствами, связанными по витой паре, и высоких скоростях передачи начинают проявляться так называемые эффекты длинных линий. При этом искажаются передаваемые сигналы за счет отражения сигналов на концах линии связи.

Известно, что любая линия электрической связи характеризуется волновым сопротивлением, которое определяется только ее параметрами: площадью и формой сечения проводов, их взаимного расположения, толщины и типа диэлектрика между ними. Если подключить к концу линии резистор, имеющий сопротивление равное волновому, сигнал от него отражаться не будет. Такая линия называется согласованной. Искажения в ней минимальны. Согласующий резистор R C устанавливается на том конце линии, в сторону которого передается сигнал. В интерфейсе RS-422 он расположен на противоположном от передатчика конце линии (см. рис. 2). В интерфейсе RS-485, если передача идет в двух направлениях, согласующие резисторы R C устанавливаются на обоих концах линии связи (см. рис. 3). Применяемые в настоящее время витые пары имеют волновое сопротивление порядка 120 Ом, поэтому сопротивление согласующих резисторов также берется величиной 120 Ом. Термин «согласующий» резистор не является общепринятым. Часто вместо него используются термины: оконечный или терминальный резистор.

Максимальная скорость передачи данных по интерфейсам RS-422/RS-485 определяется множеством факторов: длиной и параметрами линии связи, параметрами приемников и передатчиков. Максимальная скорость передачи на коротких расстояниях (до 12 м) ограничивается быстродействием передатчиков и по стандарту равна 10 Мбит/с. На средних расстояниях (десятки и сотни метров) скорость передачи уменьшается из-за возрастания потерь в емкостях изоляции кабеля и активных сопротивлений проводов. Так, например, при длине линии 120 м максимальная скорость передачи не превышает 1 Мбит/с. Максимальная длина кабеля связи по стандарту ограничена величиной 1200 м, при этом скорость передачи не превышает 100 Кбит/с.

Достоинством интерфейсов RS-422 и RS-485 являются: дешевизна соединительных кабелей; дешевизна реализации трансиверов; большой парк работающего оборудования, реализующего эти стандарты; возможность организации гальванической развязки.

Недостатком интерфейсов является то, что они отсутствуют в стандартной комплектации компьютеров и микроконтроллеров. Интерфейсы имеют довольно значительное энергопотребление и относительно невысокую скорость передачи данных.

Роберт Джи (Robert Gee), перевод и дополнения Владимир Рентюк

Оба интерфейсных протокола - RS 485 (стандарт физического уровня для асинхронного интерфейса) и CAN (Controller Area Network - стандарт промышленной сети, ориентированный, прежде всего, на объединение в единую сеть различных исполнительных устройств и датчиков) - существуют еще с середины 1980 х годов, когда они были впервые представлены в качестве стандартов для организации каналов связи. Долгое время эти интерфейсы развивались сами по себе, не касаясь друг друга. Но прошло время, и ситуация начала меняться. Почему? Разобраться в этом нам поможет небольшая дискуссия, проведенная в рамках статьи.

В отличие от предыдущих стандартов физического уровня, в частности RS‑423, RS‑422 и RS‑232, появление RS‑485 стало поистине эволюционным этапом. Системы связи с поддержкой данного стандарта представляют собой многоточечную систему и имеют до 32 узлов в одиночной системе (с репитерами до 256).

Примерно в то же время, когда создавались упомянутые выше интерфейсы, используемые в таких приложениях, как компьютерные клавиатуры и мыши, принтеры и оборудование для промышленной автоматизации, интерфейс CANbus проектировался как автомобильная коммуникационная платформа, предложенная Робертом Бошем (Robert Bosch), владельцем компании Robert Bosch GmbH, для снижения стоимости производства авто. Эта шина стала альтернативой традиционным толстым многожильным автомобильным кабелям и упростила их прокладку благодаря применению многоузловых шин. Впервые представленный в модели BMW‑850 в 1986 году, автомобильный CAN-интерфейс сэкономил в ней более 2 км различных проводов! Кроме того, было значительно сокращено количество разъемов, а оценочная экономия веса машины составила 50 кг . Так сложилось, что RS‑485 был предназначен для нужд промышленного рынка, а CAN - для автомобильного и транспортного сегмента, но постепенно он нашел место и в приложениях, скажем так, вне своей юрисдикции, то есть в автомобильной и аэрокосмической отраслях.

Благодаря своей высокой устойчивости при эксплуатации в непростых условиях, характерных для автомобильных приложений, возможностям защиты от сбоев и уникальной обработке сообщений CANbus теперь используется там, где прежде никогда не был распространен. Нынешние рыночные тенденции демонстрируют все более широкое внедрение CANbus, порой заменяющего RS‑485 в традиционных индустриальных программах.

Согласно рыночным отчетам, применение CANbus увеличивается в разы, что является исключительным фактом для рынка интерфейсов. И хотя отчеты не разделяют промышленные и автомобильные рынки, многие согласны с тем, что промышленные рынки составляют около 20–30% от общего объема выпускаемой продукции. Рост использования интерфейсов в автомобильной промышленности можно объяснить распространением электроники, установленной сегодня в автомобилях. Современные автомобили имеют сложные микропроцессорные системы, необходимые для таких функций, как резервные камеры, автоматическая парковка, информационно-развлекательные системы, распознавание слепых зон и многое другое. Появление данных подсистем связано с увеличением числа датчиков и микроконтроллеров в авто, требующихся для обработки информации от всех сложных систем, действующих внутри машины. Еще в 1990‑х годах многие автопроизводители начали переход от ручного переключения передач к автоматическим, а позже и к коробкам передач с электронным управлением, основанным на поступающих на микроконтроллер данных о скорости, положении дроссельной заслонки и информации от барометрических датчиков. Сегодня на одном транспортном средстве можно насчитать свыше 100 датчиков и микроконтроллеров, многие из которых общаются по шине CAN. Даже полностью электрический автомобиль Tesla S имеет внутри 65 микроконтроллеров .

На индустриальном рынке также наблюдается рост внедрения интерфейса CAN. Промышленные CAN-приложения имеют достаточно широкий охват и устанавливаются в самых разнообразных приложениях - от коммерческих беспилотных летательных аппаратов (дронов) до элементов управления лифтом и даже газонокосилками коммерческого назначения. Поставщики микросхем признают этот факт и разрабатывают продукты для удовлетворения все возрастающей потребности в CAN вне традиционного рынка автомобильной промышленности. Другой фактор, способствующий увеличению применения CAN в индустриальной сфере, - это переход многих инженеров‑автомобилестроителей в промышленный сегмент, где они, естественно, применили свой опыт работы с шиной CAN и ее уникальные преимущества. Еще одна причина внедрения интерфейса CAN на промышленном рынке связана с присущей ему отказоустойчивостью и способностью эффективно обрабатывать кадры сообщений на многоузловой шине.

Для того чтобы объяснить преимущества CAN по отношению к RS‑485, лучше всего оценить сходства и различия между двумя стандартами - ISO 11898-2-2016 и TIA/EIA‑485 (сейчас действует ANSI TIA/EIA‑485‑A) соответственно. Оба стандарта определяют уровни приемопередатчиков, которые представлены на диаграмме (рис. 1) для стороны передачи.

Оба протокола имеют дифференциальный выходной сигнал. Выход RS‑485 представляет собой классический дифференциальный сигнал, в котором один сигнал является инвертированным, или зеркальным отражением другого. Выход A - неинвертирующая линия, а выход B - инвертирующая линия. Дифференциальный диапазон +1,5…+5 В равен логической 1 или значению, а пределы –1,5…–5 В - логическому 0 или пробелу. Сигнал с уровнем, лежащим в диапазоне –1,5…+1,5 В, считается как неопределенный. Важно отметить, что когда RS‑485 не используется, то его выход пребывает в состоянии высокого импеданса.

У шины CAN выходной дифференциальный сигнал несколько иной. Так, здесь предусмотрено два выхода в виде CANH- и CANL-линий данных, которые являются отражением друг друга (рис. 1) и представляют собой инвертированную логику. В доминирующем состоянии (бит нуля, используемый для указания приоритета сообщения) CANH-CANL определяются как 0, когда напряжение на них составляет +1,5…+3 В. В рецессивном состоянии (1 бит и состоянии незанятой шины) сигнал драйвера определяется как логическая 1, когда дифференциальное напряжение находится в диапазоне –120…+12 мВ или в приближении к нулю.

Рис. 1. Сравнение допустимых уровней выходных дифференциальных сигналов драйверов RS 485 и CAN

Для стороны приемника стандарт RS‑485 определяет входной дифференциальный сигнал, когда он находится в пределах ±200 мВ…+5 В. Для CAN входной дифференциальный сигнал составляет +900 мВ…+3 В, а рецессивный режим находится в диапазоне –120…+500 мВ. Когда шина пребывает в режиме ожидания или когда не загружена и трансивер находится в рецессивном состоянии, напряжения на линиях CANH и CANL должны быть в рамках 2–3 В.

Как RS‑485, так и CAN имеют необходимый технологический запас по уровням распознавания для работы в приложениях, в которых сигнал может быть ослаблен из-за характеристик и качества используемого кабеля (экранированного или неэкранированного) и длины кабелей, что может сказаться на емкости подключения системы. Для сравнения допустимых уровней входных дифференциальных сигналов со стороны приемника RS‑485 и CAN следует обратиться к рис. 2.

Рис. 2. Сравнение допустимых уровней входных дифференциальных сигналов для RS 485 и CAN со стороны приемника

Кроме того, оба стандарта имеют нагрузочные согласующие резисторы с одинаковым значением 120 Ом, устанавливаемые на концах линии. Эти резисторы необходимы, чтобы обеспечить согласование линии связи по волновому сопротивлению линии передачи и тем самым избежать отражения сигнала. Другие технические характеристики, такие как скорость передачи данных и количество допустимых узлов, носят информационный характер, а не являются строгими требованиями, подлежащими обязательному выполнению. Для удовлетворения нужд рынка большинство выпускаемых RS‑485- и CAN-трансиверов превышает стандартную скорость передачи данных и допустимое количество узлов. Например, интегральный полудуплексный трансивер RS‑485 индустриального класса из микросхемы MAX22500E от компании Maxim достиг скорости в 100 Мбит/с. А новый стандарт CAN-FD, ISO 11898-2:2016, хотя и определяет временные характеристики для скоростей 2 и 5 Мбит/с, но не ограничивает скорость передачи данных значением 5 Мбит/с. CAN-трансиверы превысят требования своего стандарта так же, как и приемопередатчики RS‑485. Что касается устойчивости к синфазному сигналу, параметр CMR (Common-Mode Range, диапазон синфазных напряжений) для RS‑485 составляет –7…+12 В и для CAN –2…+7 В.

Однако многим приложениям требуется более высокая производительность в части CMR, что относится к обоим типам рассматриваемых интерфейсов. Это связано с тем, что они в основном используются для многоузловых шин, а их узлы могут иметь источники питания с разными силовыми трансформаторами или кабели находиться в непосредственной близости к оборудованию с достаточно мощными переменными электромагнитными полями, способными повлиять на заземление между узлами системы. Таким образом, учитывая множество самых различных приложений, работающих в жестких условиях индустриальной среды, часто требуется более высокая устойчивость CMR, выходящая за пределы стандартных уровней –7…+12 В.

Для решения этой проблемы существуют приемопередатчики RS‑485 и CAN нового поколения, которые имеют значительно более широкий диапазон устойчивости к воздействию синфазной помехи, а именно до ±25 В. На диаграмме, приведенной на рис. 3, представлен флуктуирующий диапазон синфазного сигнала для приемопередатчика RS‑485. Несмотря на то, что сигнал синфазного напряжения растет вверх и вниз, пока уровень синфазного напряжения (VCM) находится в пределах допустимого диапазона, он не влияет на дифференциальный сигнал шины и приемник способен принимать и распознавать сигнал на линии без ошибок. Диаграмма на рис. 3 показывает допустимый диапазон изменения синфазного сигнала для RS‑485.

Рис. 3. Пояснение параметра CMR на примере трансивера RS 485

Еще одна особенность, присущая как приемопередатчикам CAN, так и RS‑485, - защита от сбоев. Устройства с защитой от ошибок имеют внутреннюю цепь защиты от воздействия повышенного напряжения на выходы драйвера входа приемника. Это необходимо, чтобы уберечь устройства от случайных коротких замыканий между локальным источником питания и линиями передачи. В данном направлении микросхемы компании Maxim занимают лидирующее положение в отрасли. Они, как, например, широко используемая и в настоящее время MAX13041, гарантируют уровни защиты от сбоев до ±80 В и даже с некоторым дополнительным запасом до полного пробоя и выхода цепи защиты из строя . Причем важно то, что этот уровень защиты гарантируется независимо от того, подано питание на трансивер или он обесточен.

Среди основных причин того, почему в индустриальных приложениях предпочтение отдается CAN-, а не RS‑485‑трансиверам, следует назвать и способ обработки сообщений на шине. В мультиузловой системе, используемой для общения с микропроцессором RS‑485, могут быть случаи, когда несколько сообщений отправляются одновременно. Что иногда приводит к коллизиям, иначе известным как конкуренция. Если подобное происходит, состояние шины может оказаться неверным или неопределенным, что вызовет ошибки данных. Кроме того, такая конкуренция может повредить или ухудшить параметры производительности, когда несколько трансиверов RS‑485 на шине находятся в одном, а один приемопередатчик - в противоположном состоянии. Тогда от одиночного передатчика RS‑485 может потребоваться довольно значительный ток, который, вероятно, вызовет отключение микросхемы из-за превышения максимально допустимой температуры или даже приведет к необратимому повреждению системы. Здесь CANbus по сравнению с протоколом RS‑485 имеет большое преимущество. С помощью CANbus удается разрешить проблему передачи нескольких сообщений на линии путем ранжирования каждого из них.

Рис. 4. Формат кадра передачи данных CAN

Перед тем как приступить к работе по проектированию системы, инженеры назначают разные уровни задач. Ранее упоминалось, что CAN имеет доминантное и рецессивное состояние. Во время передачи сообщение с более высоким назначенным доминантным состоянием «выигрывает» конкуренцию и будет продолжать передачу, в то время как другие узлы с более низким приоритетом будут видеть доминирующий бит и прекратят передавать данные. Этот метод называется арбитражем, где сообщения приоритетны и принимаются в порядке их статуса. Узел, который проигрывает в результате более низкого назначенного приоритета, повторно отправит свое сообщение, когда его уровень окажется доминирующим. Это продолжается для всех узлов, пока они не выполнят передачу. На рис. 4 более подробно рассмотрен формат кадра данных сообщения в протоколе CAN. Эта временная диаграмма и таблица 1 наглядно демонстрируют, где и как происходит арбитраж.

Таблица 1. Формат кадра передачи данных в протоколе CAN

Наименование поля

Длина в битах

Описание

SOF (Start of frame)

Начало кадра

Identifier, выделено зеленым

Предоставляет приоритет сообщения (11 или 29 бит
для стандартной CAN и расширенной CAN, 12 или 32 бит для CAN­FD)

RTR (Remote transmission request), выделено голубым

Удаленный запрос передачи

IDE (Identifier extension bit)

Бит­идентификатор служит для идентификации расширенного формата

Зарезервированный бит для будущего расширения протокола

DLC (Data Length Code), выделено желтым

Код длины данных (4 бит для стандартной CAN, 8 или 9 бит для CAN­FD)

Data Field, выделено красным

0–64 (0–8 байт);
0–512 (0–64 байт)

Поле данных, передаваемые данные
(0–8 байт для стандартного CAN, 0–64 байт для CAN­FD)

CRC (Cyclic redundancy check)

Контрольная сумма, используется для обнаружения ошибок

Бит - разграничитель CRC

ACK (Acknowledgement) slot

Область подтверждения. Доминантный бит при сообщении об ошибке; рецессивный бит при отказе от сообщения об ошибке

Бит­разграничитель подтверждения

EOF (End of frame)

Конец кадра

Арбитраж разрешается во время передачи идентификатора, пример данной ситуации показан в таблице 2. Вне зависимости от топологии сети, даже с новым стандартом CAN-FD, фаза арбитража ограничена скоростью передачи 1 Мбит/с. Но фаза поля данных ограничена только характеристиками приемопередатчика, то есть она может проходить намного быстрее.

Таблица 2. Узел 3 в результате арбитража уступает шину узлу 1 на третьем бите

Биты идентификатора (Поле арбитража)

Стартовый бит

Узел 1

Узел 3

Остановка передачи

Помимо арбитража, уровень канала передачи данных (уровень 2 модели OSI) также способствует повышению надежности всей системы CAN в целом. На этом уровне сообщение кадра неоднократно проверяется на предмет точности и наличия ошибок. Если сообщение получено с ошибками, отправляется кадр ошибки. Он содержит флаг ошибки (Error Flag), который состоит из 6 бит одинакового значения (таким образом нарушая правило вставки битов) и разграничителя ошибки (Error Delimiter), состоящего из 8 рецессивных бит.

Разграничитель ошибки предоставляет определенное пространство, где другие узлы шины могут отправлять свои флаги ошибки после того, как сами обнаружат первый флаг ошибки. С точки зрения уровня сообщений циклическая проверка избыточности (CRC) защищает информацию в кадре добавлением избыточных контрольных битов в конце передачи, которые затем проверяются на принимающей стороне. Если они не совпадают, возникает ошибка CRC. Затем следует контроль фрейма (кадра), который определяет правильность структуры, проверяя битовые поля на фиксированный формат и размер кадра бит-разделителя SOF, EOF, ACK и CRC.

С точки зрения битового уровня существует три проверки на наличие ошибок: подтверждение, контроль бит и набивка бит. Ошибки подтверждения обнаруживаются, когда передатчик не считывает доминантный бит ACK (0). Это указывает на ошибку передачи, обнаруженную получателями, что означает, что ACK был поврежден или не было приемников. Бит-мониторинг проверяет уровень шины для каждого узла для отправленных и принятых бит. Битовая подстановка - метод, который «наполняет» или вставляет дополнительный противоположный бит, когда пять из тех же самых бит встречаются последовательно. Противоположный бит помогает различать кадры ошибок и биты EOF. На принимающей стороне дополнительный бит удаляется. Если шестой бит такой же, как и предыдущие пять, тогда ошибка обнаруживается всеми CAN-узлами и отправляются кадры ошибок. В этом случае оригинальное сообщение необходимо передать повторно, пройдя, естественно, через арбитраж, если на линии есть конфликт.

Подводя итог дискуссии, можно сделать краткий вывод: если рассматривать системы «точка-точка», требующие высокой скорости обмена данными, то здесь, благодаря более высокой скорости и простому кадру, несомненно в выигрыше оказывается интерфейс RS‑485. Но в мультиузловых системах с возможными коллизиями и на скоростях не выше 1 Мбит/с явное преимущество остается за CAN, особенно при организации связи в системе оборудования, работающего в жестких условиях индустриальной среды, в широком диапазоне рабочих температур (для упомянутого ранее MAX13041 –40…+125 °С) и при высоком уровне внешних воздействий, не говоря уже о его «родном поле деятельности» - автомобильной и транспортной сферах.

Как известно, многие системы либо подвергаются воздействию электромагнитных помех, либо страдают от ошибок обслуживающего персонала, который может по невнимательности подать питающее напряжение на линии связи. В этом отношении трансиверы CAN отличаются высокой надежностью, устойчивостью к воздействию значительных разрядов статического электричества и хорошим уровнем защиты от сбоев. Относительный недостаток CAN, а именно то, что передачу слушают все приемники на линии, легко устранить, используя имеющийся в составе кадра передачи идентификатор, да и большой беды в этом, как правило, нет.

Благодаря таким возможностям CAN, как арбитраж, проверка сообщений об ошибках, улучшенная пропускная способность и большее поле данных, легко понять привлекательность CANbus по сравнению с RS‑485 на рынке промышленного оборудования средств автоматизации. CAN-системы могут уделять первоочередное внимание важности сообщений кадров и надлежащим образом обрабатывать критические. Все это позволяет использовать трансиверы CAN, в том числе и от компании Maxim, в аппаратуре самого широкого назначения, а для различных областей применения данная компания также предлагает высокоэффективные интерфейсы с гальванической развязкой .