Распиновка COM порта(RS232). Распиновка COM порта(RS232) Расключение rs 232

В системе «Орион» интерфейс RS-232 используется для подключения пульта контроля и управления «С2000»/«С2000М» к СОМ-порту компьютера с установленным на нем АРМ «Орион»/«Орион Про».
В системах, допускающих работу под управлением АРМ «Орион»/«Орион Про» без резервирования пультом «С2000»/«С2000М» (например, в системах охранной сигнализации или контроля доступа), интерфейс RS-232 используется для подключения преобразователя интерфейса «С2000-ПИ» или «ПИ-ГР» к СОМ-порту компьютера. К преобразователю, в свою очередь, подключаются приборы системы «Орион» по интерфейсу RS-485. RS-232 имеет следующие ограничения: максимальная длина – 15 м и соединение только типа «точка-точка», т.е. непосредственно подключить несколько пультов к одному СОМ-порту нельзя.
В простейшем случае к компьютеру подключается только один пульт. Эта схема приведена на рис.

Недостатком такой схемы является отсутствие гальванической изоляции между приборами и компьютером. Схема подключения пульта к компьютеру с использованием повторителя интерфейсов «С2000-ПИ», обеспечивающего гальваническую изоляцию, приведена на рис.

ВНИМАНИЕ! Во избежание гальванической связи между компьютером и приборами пульт, повторитель и приборы нельзя подключать к одному источнику питания. Питание на пульт и «С2000-ПИ» должно подаваться от отдельного источника.
Пульту должен быть присвоен сетевой адрес, и установлен режим «КОМПЬЮТЕР» для работы по интерфейсу RS-232.

С помощью преобразователей интерфейсов RS-232/RS-485 с автоматическим переключением приема/передачи (например, «С2000-ПИ») можно подключить несколько пультов к одному СОМ-порту компьютера. Один преобразователь следует подключить к СОМ-порту компьютера, остальные - к пультам по интерфейсу RS-232, а затем объединить преобразователи по интерфейсу RS-485 (см. схему на рис. выше). Кроме того, преобразователи обеспечат гальваническую изоляцию компьютера от пультов и приборов.
Для работы по интерфейсу RS-232 каждому пульту нужно задать уникальный сетевой адрес и режим «КОМПЬЮТЕР».
При использовании АРМ «Орион» к одному СОМ-порту можно подключить до 127 устройств. Либо это будет один пульт «С2000»/ «С2000М» и до 126 приборов, схема как на рисунках выше. Либо это будет несколько пультов с подключёнными приборами, как на рис.

При этом общее количество и пультов, и приборов не должно превышать 127. В такой системе все приборы и пульты должны иметь уникальные сетевые адреса от 1 до 127, т.е. адреса приборов, подключенных к разным пультам, не должны пересекаться.
При использовании АРМ «Орион Про» к каждому COM-порту можно подключить либо до 127 приборов (приборы подключаются через преобразователи интерфейсов «ПИ-ГР», «С2000-ПИ» или «C2000 USB»), либо до 127 пультов «С2000» или «С2000М». К каждому пульту при этом можно подключить до 127 приборов. При организации системы по второму варианту компьютер опрашивает не приборы, а пульты. Пульты, в свою очередь, опрашивают подключённые к ним приборы. Каждому пульту должен быть задан сетевой адрес (от 1 до 127). Адресация приборов в системе имеет 3 уровня (номер COM-порта, адрес пульта, адрес прибора), поэтому адреса приборов, подключённых к разным пультам, могут пересекаться, как и адреса пультов, подключённых к разным COM-портам компьютера. Максимальное количество устройств, подключаемых к одному компьютеру с «Оперативной задачей Орион Про», на сегодняшний день составляет 1024.
Как уже было сказано, такая схема применяется в случае, если к COM-порту нужно подключить несколько устройств. На текущий момент АРМ «Орион» поддерживает только один СОМ-порт. АРМ «Орион Про» поддерживает до 20 физических СОМ-портов и до 127 виртуальных СОМ-портов. При использовании АРМ «Орион Про» каждый пульт можно подключать к своему COM-порту (используя схему с гальванической изоляцией или без).

В настоящее время не все компьютеры имеют СОМ-порт. Для решения задачи подключения приборов системы «Орион» к компьютеру с АРМ можно применить USB-COM преобразователи, например, «USB-RS485», а также PCI-плату расширения портов. Основные достоинства данных PCI-плат:

  • возможность использовать до 8 COM-портов;
  • поддержка интерфейса RS-232/RS-485.

Специалистами компании «Болид» была протестирована плата расширения COM-портов MOXA CP 118U. Она позволяет подключать приборы по интерфейсу RS-485 напрямую к ПК с АРМ «Орион Про» (без использования преобразователя интерфейса), а также подключать несколько пультов (каждый к своему СОМ-порту).

Подключение приборов к компьютеру через пульты «С2000»/«С2000М» позволяет б|ольшую часть функций управления приборами переложить с АРМ на пульты. Здесь важно учитывать, что каждый пульт может управлять только подключёнными к нему приборами, поэтому взаимодействие приборов, подключённых к разным пультам, возможно только через АРМ. При неисправности компьютера каждый пульт будет управлять подключёнными к нему приборами в соответствие с запрограммированной в нем базой данных. То есть система распадается на несколько независимых подсистем.

Полученные от приборов сообщения сохраняются в кольцевом энергонезависимом буфере пультов, объем которого составляет 8000 событий (для «С2000М» вер.3.0х). При восстановлении работы компьютера эти сообщения будут вычитаны АРМ.

Допустим, в системе используется несколько приборов «С2000-КДЛ», релейных блоков «С2000-СП1», клавиатур «С2000-К» и блоков индикации «С2000-БИ». Причём из-за ограниченного размера базы данных пульта требуется использовать несколько пультов «С2000»/«С2000М». Каждый пульт организует взаимодействие только подключённых к нему приборов. В частности, он позволит отображать на блоках индикации состояния своих разделов, управлять этими разделами с клавиатур и с самого пульта, автоматически управлять релейными выходами своих блоков «С2000-СП1» от своих разделов. Взаимодействие приборов, подключённых к разным пультам, возможно только через АРМ. При отключении компьютера с работающим на нем АРМ эта связь нарушается. Поэтому если требуется, например, организовать релейный выход, который должен отрабатывать состояние всех шлейфов сигнализации системы, и этот выход должен работать при отключении компьютера, лучше его организовать путём монтажного объединения выходов каждой подсистемы (параллельного или последовательного, в зависимости от требуемой тактики работы выхода).

При подключении к АРМ нескольких подсистем следует использовать пульты «С2000М», так как при использовании пультов «С2000» будут следующие ограничения:

  1. Невозможно организовать централизованный контроль доступа;
  2. Управлять взятием/снятием с охраны разделов с клавиатур «С2000-К» и блока «С2000-4», прибора «С2000-КДЛ» и т.п. можно только в рамках одной подсистемы на пульте «С2000». Это означает, что с какой-либо клавиатуры «С2000-К» можно управлять взятием/снятием с охраны разделов того пульта, к которому подключена клавиатура. Управление с этой клавиатуры приборами, подключёнными к другим пультам, невозможно. Из оперативной задачи АРМ можно управлять взятием/снятием с охраны разделов всех подсистем. При использовании пульта «С2000М» первое ограничение снимается. Что касается второго, то можно управлять взятием/снятием с охраны разделов одной подсистемы с помощью всех приборов другой подсистемы, за исключением клавиатур «С2000-К». Например, используя считыватели устройств «С2000-4», «С2000-2», «С2000-КДЛ». Также можно управлять взятием/снятием с охраны разделов одной подсистемы с пульта «С2000М» другой подсистемы. Клавиатуры «С2000-К» так же, как и в первом случае, работают только в рамках своей подсистемы.

Помимо схемы, представленной на предыдущем рисунке, подключить несколько пультов «С2000М» к компьютеру с АРМ можно при помощи ЛВС и преобразователей «С2000-Ethernet».

Основными достоинствами ЛВС являются:

  • повсеместное использование сетей Ethernet;
  • высокая помехозащищенность;

Также при использовании «С2000-Ethernet» возможно объединение приборов ИСО «Орион» через глобальную сеть Internet используя VPN туннель.

Для трансляции по указной схеме необходима устойчивая связь между VPN шлюзами (зависит от характеристик выделенных каналов Internet).

В «С2000-Ethernet» имеется поддержка прямой передачи данных по ЛВС, т.е. на стороне ПК с АРМ используется только сеть Ethernet, а ПО формирует один виртуальный COM-порт для группы удаленных «C2000-Ethernet» (см. рис.). При этом повышается быстродействие и упрощается монтаж системы, т.к. на стороне АРМ нет необходимости использовать COM-порт.

Обращаем Ваше внимание на то, что развёрнутые протоколы испытаний устройств передачи данных по различным каналам связи, о которых дальше будет идти речь, с необходимыми настройками можно найти на сайте сайт в разделе «Техническая поддержка»/ «Рекомендации по применению».

Ещё одним вариантом подключения пульта «С2000М» к компьютеру с АРМ является использование волоконно-оптической линии связи и преобразователей «RS-FX-MM» (для многомодовых ВОЛС), «RS-FX-SM40» (для одномодовых ВОЛС).

Основные достоинства ВОЛС:

  • высокая помехозащищенность;
  • искро-взрывобезопасность;
  • высокая скорость передачи данных.

Компания «Болид» поставляет сертифицированные в соответствии с преобразователи информационных интерфейсов ИСО «Орион» в ВОЛС, которые могут применяться в том числе в системах АПС и пожарной автоматики. Максимальная длина передачи данных для преобразователя «RS-FX-MM» составляет 2 км, для преобразователя «RS-FX-SM40» - 40 км.

Организовать связь сетевого контроллера (компьютера с установленным АРМ «Орион»/ «Орион Про» или пульта «С2000»/«С2000М») с удаленными приборами ИСО «Орион» можно также с помощью стандартного цифрового канала связи в потоке Е1.

Основными достоинствами цифровых каналов связи являются:

  • высокая помехоустойчивость;
  • высокая степень защиты передаваемой информации;
  • высокая скорость передачи данных;
  • слабая зависимость качества передачи от длины линии связи.

Специалистами компании «Болид» была проверена работа системы «Орион» с применением мультиплексоров «ГМ-2» фирмы «Зелакс» для передачи сообщений по цифровому каналу связи в потоке Е1.

Этот стандарт соединения оборудования был разработан в 1969 году рядом крупных промышленных корпораций и опубликован Ассоциацией электронной промышленности США (Electronic Industries Association — EIA). Международный союз электросвязи ITU-T использует аналогичные рекомендации под названием V.24 и V.28.

Интерфейс RS-232 обеспечивает соединение двух устройств, одно из которых называется DTE (Data Terminal Equipment) — ООД (Оконечное Оборудование Данных) и второе — DCE (Data Communications Equipment) — ОПД (Оборудование Передачи Данных).
Как правило, DTE (ООД) — это компьютер, а DCE (ОПД) — это модем, хотя RS-232 использовался и для подключения к компьютеру периферийных устройств (мышь, принтер, прибор), и для соединения с другим компьютером или контроллером. Обозначения DTE и DCE используются в названиях сигналов интерфейса и помогают разобраться с описанием конкретной реализации.

Интерфейс RS-232 (стандарт EIA-232) использует 25 контактные разъемы DB и служит для подключения последовательных устройств DTE и DCE (как в синхронном, так и в асинхронном режиме). Существуют также варианты этого интерфейса для 26-контактного разъема UD-26 (EIA-232-E/RS-232E ALT A) и усеченный вариант - для 9-контактного DB-9 (EIA-574) и RJ-45 (EIA-561) наиболее распространенные в настоящее время.

Контакт

Сигнал

От устройства DCE

К устройству DCE

Передача (Transmitted Data, TD)

Прием (Received Data, RD)

Запрос на передачу (Request to Send, RTS)

Готовность к передаче (Clear to Send, CTS)

Готовность данных (Data Set Ready, DSR)

Сигнальная " земля " (Signal Gnd/Common Return)

Детектирование несущей (Rcvd. Line Signal Detector, CD, DCD)

Тестовое напряжение (+)

Тестовое напряжение (-)

Не используется

Детектирование несущей, возврат (Rcvd. Line Signal Detector, CD)

Готовность к передаче, возврат (Secondary Clear to Send)

Передача, возврат (Secondary Transmitted Data)

Прием, возврат (Secondary Received Data)

Тактирование приема (Receiver Sig. Element Timing, RSET)

Локальный шлейф (LL)

Запрос на передачу, возврат (Secondary Request to Send)

Готовность терминала (Data Terminal Ready, DTR)

Детектирование качества сигнала (Sig. Quality Detector)

Индикатор вызова (Ring Indicator)

Выбор скорости (Data Sig. Rate Selector (DCE))

Тактирование передачи (Transmitter Sig. Element Timing, TSET)

Не используется

D - данные, C - управление, T - синхронизация

Широко используемый последовательный интерфейс синхронной и асинхронной передачи данных, определяемый стандартом EIA RS-232-C и рекомендациями V.24 CCITT. Изначально создавался для связи центрального компьютера с терминалом. В настоящее время используется в самых различных применениях.

Интерфейс RS-232-C соединяет два устройства. Линия передачи первого устройства соединяется с линией приема второго и наоборот (полный дуплекс). Для управления соединенными устройствами используется программное подтверждение (введение в поток передаваемых данных соответствующих управляющих символов). Возможна организация аппаратного подтверждения путем организации дополнительных RS-232 линий для обеспечения функций определения статуса и управления.

Порядок обмена по интерфейсу RS- 232C

Наименование

Направление

Описание

Контакт
(25-конт. разъем)

Контакт
(9-конт. разъем)

Carrier Detect
(Определение несущей)

Receive Data
(Принимаемые данные)

Transmit Data
(Передаваемые данные)

Data Terminal Ready
(Готовность терминала)

System Ground
(Корпус системы)

Data Set Ready
(Готовность данных)

Request to Send
(Запрос на отправку)

Clear to Send
(Готовность приема)

Ring Indicator
(Индикатор)

Интерфейс RS- 232C предназначен для подключения к компьютеру стандартных внешних устройств (принтера, сканера, модема, мыши и др.), а также для связи компьютеров между собой. Основными преимуществами использования RS- 232C по сравнению с Centronics являются возможность передачи на значительно большие расстояния и гораздо более простой соединительный кабель. В то же время работать с ним несколько сложнее. Данные в RS- 232C передаются в последовательном коде побайтно. Каждый байт обрамляется стартовым и стоповыми битами. Данные могут передаваться как в одну, так и в другую сторону (дуплексный режим).

Компьютер имеет 25-контактный (DB25) или 9-контактный (DB9) разъем для подключения RS- 232C . Назначение контактов разъема приведено в таблице.

Назначение сигналов следующее:
FG - защитное заземление (экран).
TxD - данные, передаваемые компьютером (логика отрицательная).
RxD - данные, принимаемые компьютером (логика отрицательная).
RTS(Request to Send) - сигнал запроса передачи. Активен во все время передачи.
CTS(Clear to Send) - сигнал сброса (очистки) для передачи. Активен во все время передачи. Говорит о готовности приемника.
DSR - готовность данных. Используется для задания режима модема.
SG - сигнальное заземление, нулевой провод.
DCD - обнаружение несущей данных (детектирование принимаемого сигнала).
DTR - готовность выходных данных.
RI - индикатор вызова. Говорит о приеме модемом сигнала вызова по телефонной сети.

Наиболее часто используются трех- или четырехпроводная связь (для двунапрaвленной передачи). Схема соединения для четырехпроводной линии связи показана на рисунке 1.1.

Для двухпроводной линии связи в случае только передачи из компьютера во внешнее устройство используются сигналы SG и TxD. Все 10 сигналов интерфейса задействуются только при соединении компьютера с модемом.

Формат передаваемых данных показан на рисунке 1.2. Собственно данные (5, 6, 7 или 8 бит) соопровождаются стартовым битом, битом четности и одним или двумя стоповыми битами. Получив стартовый бит, приемник выбирает из линии биты данных через определннные интервалы времени. Очень важно, чтобы тактовые частоты приемника и передатчика были одинаковыми, допустимое расхождение - не более 10%). Скорость передачи по RS- 232C может выбираться из ряда: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с.

Рис. 1.1 Схема 4-проводной линии связи для RS- 232C .

Все сигналы RS- 232C передаются специально выбранными уровнями, обеспечивающими высокую помехоустойчивость связи (рис.1.3.). Отметим, что данные передаются в инверсном коде (логической единице соответствует низкий уровень, логическому нулю - высокий уровень).

Для подключения произвольного УС к компьютеру через RS- 232C обычно используют трех- или четырехпроводную линию связи (см. рис. 1.1), но можно задействовать и другие сигналы интерфейса.

Рис. 1.2 Формат данных RS- 232C

Обмен по RS- 232C осуществляется с помощью обращений по специально выделенным для этого портам COM1 (адреса 3F8h...3FFh, прерывание IRQ4), COM2 (адреса 2F8h...2FFh, прерывание IRQ3), COM3 (адреса 3F8h...3EFh, прерывание IRQ10), COM4 (адреса 2E8h...2EFh, прерывание IRQ11). Форматы обращений по этим адресам можно найти в многочисленных описаниях микросхем контроллеров последовательного обмена UART (Universal Asynchronous Receiver/Transmitter), например, i8250, КР580ВВ51.

Рис.1.3 Уровни сигналов RS- 232C на передающем и принимающем концах линии связи.

Ключевые моменты:

1. Любая программа, способная обращаться к COM-портам c номерами от 5 и выше, скорее всего использует вызовы Windows API и потому есть большая вероятность того, что она будет работать и с USB"шным COM-портом.

2. Прикладная программа, работающая через специфические драйверы, может вызвать проблемы: "заказные" драйверы могут отсылать портам специальные команды, не распознаваемые Windows. Такая ситуация может не позволить обращаться к COM-порту через USB.

3. В случаях, когда прикладное ПО требует от пользователя указать адрес ввода-вывода и IRQ, есть большая вероятность того, что это ПО не распознает адаптер USB / RS232.

Интерфейс RS-232C предназначен для подключения аппаратуры, передающей или принимающей данные (ООД - оконечное оборудование данных, или АПД - аппаратура передачи данных; DTE - Data Terminal Equipment), к оконечной аппаратуре каналов данных (АКД; DCE - Data Communication Equipment). В роли АПД может выступать компьютер, принтер, плоттер и другое периферийное оборудование. В роли АКД обычно выступает модем. Конечной целью подключения является соединение двух устройств АПД. Полная схема соединения приведена на рис. 1; интерфейс позволяет исключить канал удаленной связи вместе с парой устройств АКД, соединив устройства непосредственно с помощью нуль-модемного кабеля (рис. 2).

Рис.1. Полная схема соединения по RS-232C


Рис.2. Соединение по RS-232C нуль-модемным кабелем

Стандарт описывает управляющие сигналы интерфейса, пересылку данных, электрический интерфейс и типы разъемов. В стандарте предусмотрены асинхронный и синхронный режимы обмена, но COM-порты поддерживают только асинхронный режим. Функционально RS-232C эквивалентен стандарту МККТТ V.24/ V.28 и стыку С2, но они имеют различные названия сигналов.

Стандарт RS-232C описывает несимметричные передатчики и приемники - сигнал передается относительно общего провода - схемной земли (симметричные дифференциальные сигналы используются в других интерфейсах - например, RS-422). Интерфейс не обеспечивает гальванической развязки устройств. Логической единице (состояние MARK) на входе данных (сигнал RxD) соответствует диапазон напряжения от –12 до –3 В; логическому нулю - от +3 до +12 В (состояние SPACE). Для входов управляющих сигналов состоянию ON (“включено”) соответствует диапазон от +3 до +12 В, состоянию OFF (“выключено”) - от –12 до –3 В. Диапазон от –3 до +3 В - зона нечувствительности, обусловливающая гистерезис приемника: состояние линии будет считаться измененным только после пересечения порога (рис. 3). Уровни сигналов на выходах передатчиков должны быть в диапазонах от –12 до –5 В и от +5 до +12 В. Разность потенциалов между схемными землями (SG) соединяемых устройств должна быть менее 2 В, при более высокой разности потенциалов возможно неверное восприятие сигналов. Заметим, что сигналы уровней ТТЛ (на входах и выходах микросхем UART) передаются в прямом коде для линий TxD и RxD и в инверсном - для всех остальных.

Интерфейс предполагает наличие защитного заземления для соединяемых устройств, если они оба питаются от сети переменного тока и имеют сетевые фильтры.

ВНИМАНИЕ

Подключение и отключение интерфейсных кабелей устройств с автономным питанием должно производиться при отключенном питании. Иначе разность невыровненных потенциалов устройств в момент коммутации может оказаться приложенной выходным или входным (что опаснее) цепям интерфейса и вывести из строя микросхемы.

Стандарт RS-232C регламентирует типы применяемых разъемов.

На аппаратуре АПД (в том числе на COM-портах) принято устанавливать вилки DB-25P или более компактный вариант - DB-9P. Девятиштырьковые разъемы не имеют контактов для дополнительных сигналов, необходимых для синхронного режима (в большинстве 25-штырьковых разъемах эти контакты не используются).

На аппаратуре АКД (модемах) устанавливают розетки DB-25S или DB-9S.

Это правило предполагает, что разъемы АКД могут подключаться к разъемам АПД непосредственно или через переходные “прямые” кабели с розеткой и вилкой, у которых контакты соединены “один в один”. Переходные кабели могут являться и переходниками с 9 на 25-штырьковые разъемы (рис. 4).

Если аппаратура АПД соединяется без модемов, то разъемы устройств (вилки) соединяются между собой нуль-модемным кабелем (Zero-modem, или Z-modem), имеющим на обоих концах розетки, контакты которых соединяются перекрестно по одной из схем, приведенных на рис. 5.


Рис. 3. Прием сигналов RS-232C

Рис. 4. Кабели подключения модемов


Рис. 5. Нуль-модемный кабель: а - минимальный, б - полный

Если на каком-либо устройстве АПД установлена розетка - это почти 100 % того, что к другому устройству оно должно подключаться прямым кабелем, аналогичным кабелю подключения модема. Розетка устанавливается обычно на тех устройствах, у которых удаленное подключение через модем не предусмотрено.

В табл. 1 приведено назначение контактов разъемов COM-портов (и любой другой аппаратуры передачи данных АПД). Контакты разъема DB-25S определены стандартом EIA/TIA-232-E, разъем DB-9S описан стандартом EIA/TIA-574. У модемов (АКД) название цепей и контактов такое же, но роли сигналов (вход-выход) меняются на противоположные.

Таблица 1. Разъемы и сигналы интерфейса RS-232C

Обозначение цепи

Контакт разъема

№ провода кабеля выносного разъема PC

Направление

1 Ленточный кабель 8-битных мультикарт.
2 Ленточный кабель 16-битных мультикарт и портов на системных платах.
3 Вариант ленточного кабеля портов на системных платах.
4 Широкий ленточный кабель к 25-контактному разъему.

Подмножество сигналов RS-232C, относящихся к асинхронному режиму, рассмотрим с точки зрения COM-порта PC. Для удобства будем пользоваться мнемоникой названий, принятой в описаниях COM-портов и большинства устройств (она отличается от безликих обозначений RS-232 и V.24). Напомним, что активному состоянию управляющих сигналов (“включено”) и нулевому значению бита передаваемых данных соответствует положительный потенциал (выше +3 В) сигнала интерфейса, а состоянию “выключено” и единичному биту - отрицательный (ниже –3 В). Назначение сигналов интерфейса приведено в табл. 2. Нормальную последовательность управляющих сигналов для случая подключения модема к COM-порту иллюстрирует рис. 6.

Таблица 2. Назначение сигналов интерфейса RS-232C

Назначение

Protected Ground - защитная земля, соединяется с корпусом устройства и экраном кабеля

Signal Ground - сигнальная (схемная) земля, относительно которой действуют уровни сигналов

Transmit Data - последовательные данные - выход передатчика

Receive Data - последовательные данные - вход приемника

Request To Send - выход запроса передачи данных: состояние “включено” уведомляет модем о наличии у терминала данных для передачи. В полудуплексном режиме используется для управления направлением - состояние “включено” служит сигналом модему на переключение в режим передачи

Clear To Send - вход разрешения терминалу передавать данные. Состояние “выключено” запрещает передачу данных. Сигнал используется для аппаратного управления потоками данных

Data Set Ready - вход сигнала готовности от аппаратуры передачи данных (модем в рабочем режиме подключен к каналу и закончил действия по согласованию с аппаратурой на противоположном конце канала)

Data Terminal Ready - выход сигнала готовности терминала к обмену данными. Состояние “включено” поддерживает коммутируемый канал в состоянии соединения

Data Carrier Detected - вход сигнала обнаружения несущей удаленного модема

Ring Indicator - вход индикатора вызова (звонка). В коммутируемом канале этим сигналом модем сигнализирует о принятии вызова


Рис. 6. Последовательность управляющих сигналов интерфейса

  1. Установкой DTR компьютер указывает на желание использовать модем.
  2. Установкой DSR модем сигнализирует о своей готовности и установлении соединения.
  3. Сигналом RTS компьютер запрашивает разрешение на передачу и заявляет о своей готовности принимать данные от модема.
  4. Сигналом CTS модем уведомляет о своей готовности к приему данных от компьютера и передаче их в линию.
  5. Снятием CTS модем сигнализирует о невозможности дальнейшего приема (например, буфер заполнен) - компьютер должен приостановить передачу данных.
  6. Сигналом CTS модем разрешает компьютеру продолжить передачу (в буфере появилось место).
  7. Снятие RTS может означать как заполнение буфера компьютера (модем должен приостановить передачу данных в компьютер), так и отсутствие данных для передачи в модем. Обычно в этом случае модем прекращает пересылку данных в компьютер.
  8. Модем подтверждает снятие RTS сбросом CTS.
  9. Компьютер повторно устанавливает RTS для возобновления передачи.
  10. Модем подтверждает готовность к этим действиям.
  11. Компьютер указывает на завершение обмена.
  12. Модем отвечает подтверждением.
  13. Компьютер снимает DTR, что обычно является сигналом на разрыв соединения (“повесить трубку”).
  14. Модем сбросом DSR сигнализирует о разрыве соединения.

Из рассмотрения этой последовательности становятся понятными соединения DTR–DSR и RTS–CTS в нуль-модемных кабелях.

Асинхронный режим передачи

Асинхронный режим передачи является байт-ориентированным (символьно-ориентированным): минимальная пересылаемая единица информации - один байт (один символ). Формат посылки байта иллюстрирует рис. 7. Передача каждого байта начинается со старт-бита, сигнализирующего приемнику о начале посылки, за которым следуют биты данных и, возможно, бит четности (Parity). Завершает посылку стоп-бит, гарантирующий паузу между посылками. Старт-бит следующего байта посылается в любой момент после стоп-бита, то есть между передачами возможны паузы произвольной длительности. Старт-бит, имеющий всегда строго определенное значение (логический 0), обеспечивает простой механизм синхронизации приемника по сигналу от передатчика. Подразумевается, что приемник и передатчик работают на одной скорости обмена. Внутренний генератор синхронизации приемника использует счетчик-делитель опорной частоты, обнуляемый в момент приема начала старт-бита. Этот счетчик генерирует внутренние стробы, по которым приемник фиксирует последующие принимаемые биты. В идеале стробы располагаются в середине битовых интервалов, что позволяет принимать данные и при незначительном рассогласовании скоростей приемника и передатчика. Очевидно, что при передаче 8 бит данных, одного контрольного и одного стоп-бита предельно допустимое рассогласование скоростей, при котором данные будут распознаны верно, не может превышать 5 %. С учетом фазовых искажений и дискретности работы внутреннего счетчика синхронизации реально допустимо меньшее отклонение частот. Чем меньше коэффициент деления опорной частоты внутреннего генератора (чем выше частота передачи), тем больше погрешность привязки стробов к середине битового интервала, и требования к согласованности частот становятся более строгие. Чем выше частота передачи, тем больше влияние искажений фронтов на фазу принимаемого сигнала. Взаимодействие этих факторов приводит к повышению требований к согласованности частот приемника и передатчика с ростом частоты обмена.


Рис.7. Формат асинхронной передачи RS-232C

Формат асинхронной посылки позволяет выявлять возможные ошибки передачи.

  • Если принят перепад, сигнализирующий о начале посылки, а по стробу старт-бита зафиксирован уровень логической единицы, старт-бит считается ложным и приемник снова переходит в состояние ожидания. Об этой ошибке приемник может не сообщать.
  • Если во время, отведенное под стоп-бит, обнаружен уровень логического нуля, фиксируется ошибка стоп-бита.
  • Если применяется контроль четности, то после посылки бит данных передается контрольный бит. Этот бит дополняет количество единичных бит данных до четного или нечетного в зависимости от принятого соглашения. Прием байта с неверным значением контрольного бита приводит к фиксации ошибки.
  • Контроль формата позволяет обнаруживать обрыв линии: как правило, при обрыве приемник “видит” логический нуль, который сначала трактуется как старт-бит и нулевые биты данных, но потом срабатывает контроль стоп-бита.

Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 и 115200 бит/с. Иногда вместо единицы измерения “бит/с” используют “бод” (baud), но при рассмотрении двоичных передаваемых сигналов это некорректно. В бодах принято измерять частоту изменения состояния линии, а при недвоичном способе кодирования (широко применяемом в современных модемах) в канале связи скорости передачи бит (бит/с) и изменения сигнала (бод) могут отличаться в несколько раз.

Количество бит данных может составлять 5, 6, 7 или 8 (5- и 6-битные форматы распространены незначительно). Количество стоп-бит может быть 1, 1,5 или 2 (“полтора бита” означает только длительность стопового интервала).

Управление потоком данных

Для управления потоком данных (Flow Control) могут использоваться два варианта протокола - аппаратный и программный. Иногда управление потоком путают с квитированием. Квитирование (handshaking) подразумевает посылку уведомления о получении элемента, в то время как управление потоком предполагает посылку уведомления о возможности или невозможности последующего приема данных. Зачастую управление потоком основано на механизме квитирования.

Аппаратный протокол управления потоком RTS/CTS (hardware flow control) использует сигнал CTS, который позволяет остановить передачу данных, если приемник не готов к их приему (рис. 8). Передатчик “выпускает” очередной байт только при включенной линии CTS. Байт, который уже начал передаваться, задержать сигналом CTS невозможно (это гарантирует целостность посылки). Аппаратный протокол обеспечивает самую быструю реакцию передатчика на состояние приемника. Микросхемы асинхронных приемопередатчиков имеют не менее двух регистров в приемной части - сдвигающий, для приема очередной посылки, и хранящий, из которого считывается принятый байт. Это позволяет реализовать обмен по аппаратному протоколу без потери данных.


Рис.8. Аппаратное управление потоком

Аппаратный протокол удобно использовать при подключении принтеров и плоттеров, если они его поддерживают. При непосредственном (без модемов) соединении двух компьютеров аппаратный протокол требует перекрестного соединения линий RTS - CTS.

При непосредственном соединении у передающего терминала должно быть обеспечено состояние “включено” на линии CTS (соединением собственных линий RTS - CTS), в противном случае передатчик будет “молчать”.

Применяемые в IBM PC приемопередатчики 8250/16450/16550 сигнал CTS аппаратно не отрабатывают, а только показывают его состояние в регистре MSR. Реализация протокола RTS/CTS возлагается на драйвер BIOS Int 14h, и называть его “аппаратным” не совсем корректно. Если же программа, пользующаяся COM-портом, взаимодействует с UART на уровне регистров (а не через BIOS), то обработкой сигнала CTS для поддержки данного протокола она занимается сама. Ряд коммуникационных программ позволяет игнорировать сигнал CTS (если не используется модем), и для них не требуется соединение входа CTS с выходом даже своего сигнала RTS. Однако существуют и иные приемопередатчики (например, 8251), в которых сигнал CTS отрабатывается аппаратно. Для них, а также для “честных” программ, использование сигнала CTS на разъемах (а то и на кабелях) обязательно.

Программный протокол управления потоком XON/XOFF предполагает наличие двунаправленного канала передачи данных. Работает протокол следующим образом: если устройство, принимающее данные, обнаруживает причины, по которым оно не может их дальше принимать, оно по обратному последовательному каналу посылает байт-символ XOFF (13h). Противоположное устройство, приняв этот символ, приостанавливает передачу. Когда принимающее устройство снова становится готовым к приему данных, оно посылает символ XON (11h), приняв который противоположное устройство возобновляет передачу. Время реакции передатчика на изменение состояния приемника по сравнению с аппаратным протоколом увеличивается, по крайней мере, на время передачи символа (XON или XOFF) плюс время реакции программы передатчика на прием символа (рис. 9). Из этого следует, что данные без потерь могут приниматься только приемником, имеющим дополнительный буфер принимаемых данных и сигнализирующим о неготовности заблаговременно (имея в буфере свободное место).


Рис.9. Программное управление потоком XON/XOFF

Преимущество программного протокола заключается в отсутствии необходимости передачи управляющих сигналов интерфейса - минимальный кабель для двустороннего обмена может иметь только 3 провода (см. рис. 5, а). Недостатком, помимо обязательного наличия буфера и большего времени реакции (снижающего общую производительность канала из-за ожидания сигнала XON), является сложность реализации полнодуплексного режима обмена. В этом случае из потока принимаемых данных должны выделяться (и обрабатываться) символы управления потоком, что ограничивает набор передаваемых символов.

Кроме этих двух распространенных стандартных протоколов, поддерживаемых и ПУ, и ОС, существуют и другие.


RS-232 - популярный протокол, применяемый для связи компьютеров с модемами и другими периферийными устройствами. Это интерфейс передачи информации между двумя устройствами на расстоянии до 20 м. Информация передается по проводам с уровнями сигналов, отличающимися от стандартных 5В, для обеспечения большей устойчивости к помехам. Асинхронная передача данных осуществляется с установленной скоростью при синхронизации уровнем сигнала стартового импульса.

Последовательный интерфейс RS-232 - обзор стандарта

Это широко используемый последовательный интерфейс синхронной и асинхронной передачи данных, определяемый стандартом EIA RS-232-C и рекомендациями V.24 CCITT. Изначально он создавался для связи компьютера с терминалом. В настоящее время используется в самых различных сферах.

Интерфейс RS-232-C соединяет два устройства. Линия передачи первого устройства соединяется с линией приема второго и наоборот (полный дуплекс) Для управления соединенными устройствами используется программное подтверждение (введение в поток передаваемых данных соответствующих управляющих символов). Возможна организация аппаратного подтверждения путем организации дополнительных RS-232 линий для обеспечения функций определения статуса и управления.



Стандарт EIA RS-232-C, CCITT V.24
Скорость передачи 115 Кбит/с (максимум)
Расстояние передачи 15 м (максимум)
Характер сигнала несимметричный по напряжению
Количество драйверов 1
Количество приемников 1
Схема соединения полный дуплекс, от точки к точке

Порядок обмена по интерфейсу RS-232C:

Наименование Направление Описание Контакт
(25-контактный разъем)
Контакт
(9-контактный разъем)
DCD IN Carrier Detect (Определение несущей) 8 1
RXD IN Receive Data (Принимаемые данные) 3 2
TXD OUT Transmit Data (Передаваемые данные) 2 3
DTR OUT Data Terminal Ready (Готовность терминала) 20 4
GND - System Ground (Корпус системы) 7 5
DSR IN Data Set Ready (Готовность данных) 6 6
RTS OUT Request to Send (Запрос на отправку) 4 7
CTS IN Clear to Send (Готовность приема) 5 8
RI IN Ring Indicator (Индикатор) 22 9

Интерфейс RS-232C предназначен для подключения к компьютеру стандартных внешних устройств (принтера, сканера, модема, мыши и др.), а также для связи компьютеров между собой. Основными преимуществами использования RS-232C по сравнению с Centronics являются:

  • возможность передачи на значительно большие расстояния;
  • гораздо более простой соединительный кабель.
В то же время работать с ним несколько сложнее. Данные в RS-232C передаются в последовательном коде побайтно. Каждый байт обрамляется стартовым и стоповыми битами. Они могут передаваться как в одну, так и в другую сторону (дуплексный режим).
  • Смотрите схему
Компьютер имеет 25-контактный (DB25P) или 9-контактный (DB9P) разъем для подключения RS-232C. Назначение контактов разъема приведено в таблице.

Назначение сигналов следующее:

  1. FG - защитное заземление (экран).
  2. TxD - данные, передаваемые компьютером в последовательном коде (логика отрицательная).
  3. RxD - данные, принимаемые компьютером в последовательном коде (логика отрицательная).
  4. RTS - сигнал запроса передачи. Активен во все время передачи.
  5. CTS - сигнал сброса (очистки) для передачи. Активен во все время передачи. Говорит о готовности приемника.
  6. DSR - готовность данных. Используется для задания режима модема.
  7. SG - сигнальное заземление, нулевой провод.
  8. DCD - обнаружение несущей данных (детектирование принимаемого сигнала).
  9. DTR - готовность выходных данных.
  10. RI - индикатор вызова. Говорит о приеме модемом сигнала вызова по телефонной сети.
Наиболее часто используется трех- или четырехпроводная связь (для двунапрвленной передачи). Схема соединения для четырехпроводной линии связи показана на рисунке ниже.


Для двухпроводной линии связи в случае только передачи из компьютера во внешнее устройство используются сигналы SG и TxD. Все 10 сигналов интерфейса задействуются только при соединении компьютера с модемом.

Формат передаваемых данных показан на рисунке ниже. Собственно, данные (5, 6, 7 или 8 бит) сопровождаются стартовым битом, битом четности и одним или двумя стоповыми битами. Получив стартовый бит, приемник выбирает из линии биты данных через определенные интервалы времени. Очень важно, чтобы тактовые частоты приемника и передатчика были одинаковыми, допустимое расхождение - не более 10 %). Скорость передачи по RS-232C может выбираться из ряда: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с.


Все сигналы RS-232C передаются специально выбранными уровнями, обеспечивающими высокую помехоустойчивость связи (рисунок ниже). Отметим, что данные передаются в инверсном коде (логической единице соответствует низкий уровень, логическому нулю - высокий уровень).

Для подключения произвольного УС к компьютеру через RS-232C обычно используют трех- или четырехпроводную линию связи, но можно задействовать и другие сигналы интерфейса.


Обмен по RS-232C осуществляется с помощью обращений по специально выделенным для этого портам:
  • COM1 (адреса 3F8h...3FFh, прерывание IRQ4);
  • COM2 (адреса 2F8h...2FFh, прерывание IRQ3);
  • COM3 (адреса 3F8h...3EFh, прерывание IRQ10);
  • COM4 (адреса 2E8h...2EFh, прерывание IRQ11).
Форматы обращений по этим адресам можно найти в многочисленных описаниях микросхем контроллеров последовательного обмена UART (Universal Asynchronous Receiver/Transmitter), например, i8250, КР580ВВ51.

Распиновки кабелей RS-232

Рассмотрим стандартные и не очень распиновки кабелей.

Условные обозначения:

  • F - «мама»;
  • M - «папа»;
  • «-» - соединение;
  • «х» - нет соединения;
  • «+» - линии объединяются.
DTE 9 F <--> DCE 9 M

Применяется для соединения таких устройств как компьютер и модем.

Соединение прямое:

  • 1 - 1
  • 2 - 2
  • 3 - 3
  • 9 - 9

Примечание: Экраны соединяются.


DTE 9 F <--> DTE 9 F (Null-modem 9)

Применяется для соединения таких устройств как компьютер и компьютер.

Соединение:

  • 1+7- 8
  • 2 - 3
  • 3 - 2
  • 4 - 6
  • 5 - 5
  • 6 - 4
  • 7+1 - 8
  • 8 - 1+7

Примечание: 1 и 7 контакты на разъемах соединены между собой. 9 не используется. Экраны соединяются.


DTE 25 F <--> DCE 9 M

Применяется для соединения таких устройств как компьютер (25-пиновый разъем) и 9-пиновая мышь (или модем).

Соединение:

  • 2 - 3
  • 3 - 2
  • 4 - 7
  • 5 - 8
  • 6 - 6
  • 7 - 5
  • 8 - 1
  • 20 - 4
  • 22 – 9

Примечание:


DTE 9 F <--> DCE 25 M

Применяется для соединения таких устройств как компьютер (9-пиновый разъем) и 25-пиновая мышь (или модем).

Соединение:

  • 1 - 8
  • 2 - 3
  • 3 - 2
  • 4 - 20
  • 5 - 7
  • 6 - 6
  • 7 - 4
  • 8 - 5
  • 9 - 22

Примечание: Остальные не используются. Экраны соединяются.


DTE 25 F <--> DCE 25 M

Применяется для соединения таких устройств как компьютер (25-пиновый разъем) и 25-пиновая мышь (или модем).

Соединение прямое:

  • 1 - 1
  • 2 - 2
  • 3 - 3
  • 4 - 4
  • 24 - 24
  • 25 – 25

Примечание: Экраны соединяются.


DTE 25 F <--> DTE 25 F (Null-modem Универсальный 25)

Применяется для соединения таких устройств как компьютер (25-пиновый разъем) и компьютер (25-пиновый разъем).

Соединение:

  • 1 - 1
  • 2 - 3
  • 3 - 2
  • 4 - 5
  • 5 - 4
  • 6+8 - 20
  • 7 - 7
  • 20 - 6+8

Примечание: Остальные не используются. Экраны соединяются.


Заглушка на COM-порт 9 pin F

Соединение:

  • 1+6+4

Примечание: Остальные не используются.


Заглушка на COM-порт 25 pin F

Применяется для тестирования коммуникационных приложений.

Соединение:

  • 6+8+20

Примечание: Остальные не используются.

Как получить 5 вольт от порта RS-232?


Список необходимых деталей:
  1. Линейный регулятор - L78L05.
  2. 2 выпрямительных диода (D1, D2) - 1N4004.
  3. Электролитический конденсатор (C1) - 22 мкФ.
  4. Конденсатор (C2) - 0.001 мкФ.
  5. 2 резистора (R1, R2) - 43 Ом.
В схеме используется LM78L05 или советский аналог на 5В. Диоды любые. Напряжение +5В получается из сигналов RTS и DTR в RS-232. Эта схема даже из портативного компьютера может выдавать ток 12 мА. Единственный недостаток - то, что устройство транзисторно-транзисторной логики должно быть изолировано от корпуса компьютера, потому что интерфейс воспринимает корпус RS-232 как положительное напряжение.

Преобразователи интерфейса RS-232

Конвертер RS-232 в TTL

При разработке различного рода электронных устройств с использованием микроконтроллеров очень часто оказывается полезной возможность подключения их к персональному компьютеру через последовательный порт. Однако напрямую это сделать невозможно, поскольку по стандарту RS-232 сигнал передается уровнями -3...-15 В (логическая <1>) и +3..+15В (логический <0>).

Для преобразования уровней RS-232 в стандартные логические уровни TTL обычно используют специальные микросхемы преобразователей. Однако далеко не всегда имеет смысл закладывать преобразователь уровней в схему проектируемого устройства, поскольку часто бывает так, что связь с компьютером нужна только на этапе изготовления и отладки устройства, а для конечного изделия в ней нет никакой необходимости.

Сигналы и контакты интерфейса RS232
Разъем 9-ти
пиновый #
Разъем 25
пиновый #
Обозначение Полное наименование Направление Что значит
Передача данных (Transmit Data) Передача данных от компьютера
Прием данных (Receive Data) Прием данных компьютером
Запрос на передачу (Request to Send)
Готовность передачи (Clear to Send) Аппаратный контроль передачи данных типа RTS/CTS
Готовность источника данных (Data Set Ready) Я готов для обмена данными
Готовность приемника данных (Data Terminal Ready) Я готов для обмена данными
Наличие несущей (Carrier Detect) Один модем соединен с другим
Сигнал вызова (Ring Indicator) Звонок (вызов) на телефонной линии
Земля

Замечание: DCD иногда маркируется как CD

Сигналы могут иметь другое значение

Только 3 контакта из 9 имеют строго определенное значение: передача, прием и земля. Это аппаратные линии и вы не можете повлиять изменить из предназначение. Но все другие сигнальные линии управляются программно и могут быть (или подразумевается что могут) в большинстве своем другого назначения. Однако они могут прнимать только два состояния: высокое (установленное) (+12 вольт) и низкое (сброшенное) (-12 вольт). Установленное состояние это "включено" и сброшенное состояние это "выключено". Для примера, Advanced Serial Port Monitor (или точнее пользователь программы) может управлять сигналом DTR, в аппаратная часть в свою очередь подает на него напряжение 12 вольт с той или иной полярностью. Модем (или другое устройство) которое принимает сигнал DTR может интерпретировать его по-разному. В одном случае модем (в зависимости от модели и прошивки) может может занять телефонную линию если сигнал DTR сброшен. В другом случае модем проигнорировать сигнал DTR в сброшенном состоянии.

Это применимо ко всем 6-ти сигнальным линиям. Аппаратная часть только посылает и принимает эти сигналы, но действие зависит (если оно вообще есть) от программы (например, Advanced Serial Port Monitor) и конфигурации того оборудоввания, которое вы подключаете к последовательному порту.

Кабельные соединения между последовательными портами

Работа по последовательному интерфейсу имеет свои преимущества. Одна из причин это то, что все сигналы однонаправленные. Если контакт 2 отправляет данные (и не позволяет принимать другие сигналы) то очевидно, что нельзя подсоединить к контакту 2 контакт того же типа. Если вы все же сделаете это, то вы не смоежет не отсылать, ни принимать сигналы по этой линии. Есть два разных способа соединения устройств. Один из них подразумевает соединение двух устройств разного типа, когда контакт №2 одного отсылает данные на контакт №2 второго (который принимает этот сигнал). Это путь, когда вы соединяете компьютер (DTE) и модем (DCE). Также существует второй путь в котором устройства могут быть одного типа: соедините контакт отправки данных №2 с контактом №3, принимающим данные устройства того же типа. Это путь, когда можно соединять два компьютера (DTE-в-DTE). Тип кабеля, использумый в этом случае называется null-modem cable (нуль-модемный кабель) поскольку он соединяет два компьютера без использования модемов. Нуль-модемный также иногда называют перевернутым кабелем, т.к. провода между контактами 2 иd 3 идут наоборот. Пример выше приведен для контактов 25-ти контактного разъема, но также соответственно можно использовать и 9-ти контактный разъем.

Контроль передачи данных типа RTS/CTS и DTR/DSR

Это так называемый "аппаратный" контроль передачи данных. Контроль передачи данных был раскрыт более подробно на другой странице в разедлее "Контроль передачи данных" , однако контакты и сигналы не были описаны. Advanced Serial Port Monitor поддерживает RTS/CTS и DTR/DSR типы аппаратного контроля передачи данных. Только RTS/CTS тип контроля предачи данных будет рассмотрен здесь, поскольку DTR/DSR тип контроля передачи данных функционирует по тому же принципу. Для того, чтобы активировать RTS/CTS контроль передачи данных необходимо только выбрать эту опцию в настройках Advanced Serial Port Monitor .

Итак, если DTE устройство (такое как компьютер) хочет прекратить передачу данных, оно сбрасывает состояние сигнала RTS. Сброшенный сигнал"Запрос на передачу (Request to Send)" (-12 вольт) означает "не посылать запросы ко мне" (прекратить передачу). Когда компьютер готов для принятия очередного блока данных он устанавливает сигнал RTS (+12 вольт) и поток данных возобновляется. Сигналы контроля передачи данных всегда посылаются в противоположном направлении от потока данных контроль которых они осуществляют. DCE устройства (модемы) работают по тому же принципу, только посылают сигнал на контакте CTS. Поэтому тип контроля передачи даных RTS/CTS использует 2 линии (провода).